Math 345, Fall 2024

Solutions to Homework #16

Problem 1. V.6, #2. Calculate the terms through order five (i.e., up to and including the z^5 term) of the power series expansion centered at z = 0 of the function $f(z) = z/\sin z$.

Solution. We know $\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + O(z^7)$. Therefore, $\frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + O(z^6)$. Hence, $\frac{z}{\sin z} = \frac{1}{(\sin z)/z} = \frac{1}{1 - \frac{z^2}{3!} + \frac{z^4}{5!} + O(z^6)} = \frac{1}{1 - \left(\frac{z^2}{3!} - \frac{z^4}{5!} + O(z^6)\right)}$ $= 1 + \left(\frac{z^2}{3!} - \frac{z^4}{5!} + O(z^6)\right) + \left(\frac{z^2}{3!} - \frac{z^4}{5!} + O(z^6)\right)^2 + \left(\frac{z^2}{3!} - \frac{z^4}{5!} + O(z^6)\right)^3 + \cdots$ $= 1 + \left(\frac{z^2}{3!} - \frac{z^4}{5!}\right) + \left(\frac{z^2}{3!} - \frac{z^4}{5!}\right)^2 + O(z^6) = 1 + \frac{z^2}{3!} - \frac{z^4}{5!} + \left(\frac{z^2}{3!}\right)^2 + O(z^6)$ $= 1 + \frac{z^2}{6} - \frac{z^4}{120} + \frac{z^4}{36} + O(z^6) = \left[1 + \frac{1}{6}z^2 + \frac{7}{360}z^4 + O(z^6)\right]$

Problem 2. V.6, #3. Write the power series expansion (centered at 0) of $f(z) = \frac{e^z}{1+z}$ as $f(z) = \sum_{n=1}^{\infty} a_n z^n$.

(a) Prove that $a_0 = 1$, $a_1 = 0$, and $a_n = (-1)^n \left[\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!} \right]$ for all $n \ge 2$.

(b) Find the radius of convergence of this series (and of course prove your answer).

Solutions/Proofs. (a):

 $(\text{Method 1}): \text{ We have } e^{z} = \sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \text{ and } \frac{1}{1+z} = \sum_{m=0}^{\infty} (-1)^{m} z^{m}, \text{ so by formula (6.1) on page 152 for the product of two series, we have } \sum_{n=0}^{\infty} a_{n} z^{n} = e^{z} \cdot \frac{1}{1+z} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{1}{k!} \cdot (-1)^{n-k}\right) z^{n}.$ Thus, for each $n \ge 0$, we have $a_{n} = \sum_{k=0}^{n} \frac{1}{k!} \cdot (-1)^{n-k} = (-1)^{n} \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}.$ For n = 0, this formula gives $a_{0} = \frac{1}{0!} = 1$, and for n = 1, it gives $a_{1} = (-1)\left(\frac{1}{0!} - \frac{1}{1!}\right) = 1 - 1 = 0$, as desired. For $n \ge 2$, we have: $\frac{a_{n} = (-1)^{n} \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \dots + \frac{(-1)^{n}}{n!}\right) = (-1)^{n} \left[\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n}}{n!}\right] \qquad \text{QED}$ (a), (Method 2): We have $(1 + z) \sum_{n=0}^{\infty} a_{n} z^{n} = e^{z} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n}.$ The sum on the left is $\sum_{n=0}^{\infty} a_{n} z^{n} + \sum_{n=0}^{\infty} a_{n} z^{n+1} = \sum_{n=0}^{\infty} a_{n} z^{n} + \sum_{n=1}^{\infty} a_{n-1} z^{n} = a_{0} + \sum_{n=1}^{\infty} (a_{n} + a_{n-1}) z^{n}.$ Thus, we have $a_{0} + \sum_{n=1}^{\infty} (a_{n} + a_{n-1}) z^{n} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n}.$ Equivalently, $a_{0} = \frac{1}{0!} = 1$, and for each $n \ge 1$, we have $a_{n} = \frac{1}{n!} - a_{n-1}.$

Hence, for n = 1, we have $a_1 = \frac{1}{1!} - a_0 = 1 - 1 = 0$. We now prove the desired equality for $n \ge 2$ by induction. For n = 2, our formula gives $a_2 = \frac{1}{2!} - a_1 = \frac{1}{2!} = (-1)^2 \left[\frac{1}{2!}\right]$, verifying the desired equality for n = 2. Assuming the equality holds for n - 1, our formula for n gives

$$a_{n} = \frac{1}{n!} - a_{n-1} = \frac{1}{n!} - (-1)^{n-1} \left[\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!} \right]$$
$$= \frac{1}{n!} + (-1)^{n} \left[\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!} \right] = (-1)^{n} \left[\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!} + \frac{(-1)^{n}}{n!} \right] \qquad \text{QED}$$

(b): The function f(z) is analytic on $\mathbb{C} \setminus \{-1\}$, and because $\lim_{z \to -1} |f(z)| = \infty$ (since the denominator 1 + z approaches 0 and the numerator approaches $1/e \neq 0$), it follows that no extension of f can be analytic at -1.

Thus, the largest R > 0 such that f is analytic on D(0, R) is R = |-1 - 0| = 1. Therefore, by the second Corollary on page 146, the radius of convergence of this power series is $\boxed{R = 1}$

Problem 3. V.7, #1(b,c,e). Find the zeros, and the orders of those zeros, of the following functions. (b) $\frac{1}{z} + \frac{1}{z^5}$ (c) $z^2 \sin z$ (e) $\frac{\cos z - 1}{z}$

Solutions. (a): Call this function f(z), which we rewrite as $f(z) = \frac{z^4 + 1}{z^5}$. Thus the zeros of f are the roots of $z^4 = -1$, i.e., $\boxed{\pm e^{i\pi/4} \text{ and } \pm e^{-i\pi/4}}$. [Note: there are other ways to write this, such as $\frac{1}{2}(\pm 1 \pm i)$ and as $e^{i(\pi/4+j\pi/2)}$ for j = 0, 1, 2, 3, among other ways.]

We also have $f'(z) = -z^{-2} - 5z^{-6} = \frac{-(z^4 + 5)}{z^6}$. Thus, at each of the zeros z_j of f, since $z_j^4 = -1$, we have $f'(z_j) = \frac{-(-1+5)}{z_j^6} = \frac{-4}{z_j^6} \neq 0$. Hence, each of the four roots of f has order 1 as a zero of f

(b): Let $g(z) = z^2 \sin z$, which we write as $g_1(z) \cdot g_2(z)$, where $g_1(z) = z^2$ and $g_2(z) = \sin z$. Note that $g_1(z) = z^2$ has a zero only at z = 0, where the order of the zero is 2, since $g_1 = z^2 \cdot 1$. Also observe that $g_2(z) = \sin z$ has zeros at $n\pi$ for $n \in \mathbb{Z}$. We have $g'_2(z) = \cos(z)$, so $g'_2(n\pi) = \pm 1 \neq 0$. Thus, each of these zeros of g_2 has order 1.

Recall (from page 155) that for any point z_0 , the order of the zero of the product $g = g_1g_2$ at z_0 is the sum of the orders of the zeros of g_1 and g_2 at z_0 .

Thus, g has a zero of order 1 + 2 = 3 at z = 0 and a zero of order 1 at each $z = n\pi$ for $n \in \mathbb{Z} \setminus \{0\}$

(c): Write $h(z) = \frac{\cos z - 1}{z} = \frac{h_1(z)}{h_2(z)}$, where $h_1(z) = \cos z - 1$ and $h_2(z) = z$.

Solving $h_1(z) = 0$ gives $z = 2\pi n$ for $n \in \mathbb{Z}$. Note that $h'_1(z) = -\sin z$ satisfies $h'_1(2\pi n) = 0$ for all $n \in \mathbb{Z}$, but $h''_1(z) = -\cos z$ has $h''_1(2\pi n) = -1 \neq 0$. Thus, h_1 has zeros of order 2 at each point $z = 2\pi n$ for $n \in \mathbb{Z}$, and no other zeros.

On the other hand, $h_2(z) = z$ has a zero of order 1 at z = 0, and no other zeros. Since h_1 has a zero of order 2 there, we may write $h_1(z) = z^2 H(z)$ with H analytic at 0 and $H(0) \neq 0$. Thus, h(z) = z H(z), so that h has a zero of order 1 at z = 0.

Thus, h has a zero of order 1 at z = 0 and a zero of order 2 at each $z = 2n\pi$ for $n \in \mathbb{Z} \setminus \{0\}$

Problem 4. V.7, #6. Let f be analytic on a domain D, and let $z_0 \in D$. Suppose that $f^{(m)}(z_0) = 0$ for all $m \ge 1$. Prove that f is constant on D.

Proof. There is some r > 0 so that $D(z_0, r) \subseteq D$.

Let $c = f(z_0)$. Then the analytic function g(z) = f(z) - c has $g(z_0)$ and $g^{(m)}(z_0) = 0$ for all $m \ge 1$. That is, $g^{(m)}(z_0) = 0$ for all $m \ge 0$.

Since g is equal to its Taylor series on the disk $D(z_0, r)$ (by the Taylor series Theorem on page 144), it follows that g is identically zero on $D(z_0, r)$.

In particular, z_0 is a non-isolated zero of g. Therefore, by the Theorem on page 156, g is identically zero on all of D. Thus, f = g + c is identically equal to c on all of D. That is, f is constant. QED

Problem 5. V.7, #8. Let f and g be analytic functions on a domain D, and let $z_0 \in D$. Suppose that f has a zero of order $m \ge 0$ at z_0 , and g has a zero of order $n \ge 0$ at z_0 . Let k be the order of the zero of the function f(z) + g(z) at z_0 .

(a) Prove that $k \ge \min\{m, n\}$.

(b) If $m \neq n$, prove that $k = \min\{m, n\}$.

(c) Give an example to show that we can have $k > \min\{m, n\}$ in the case that m = n.

Proofs/Solutions. (a): First, if $m = \infty$, then f = 0 and k = n, so we have f + g = g has a zero of order n = k at z_0 , as desired. Similarly, if $n = \infty$, then by similar reasoning with the roles reversed, we have that f + g = f has a zero of order m = k at z_0 .

For the remainder of the proof, then, we may assume that $m, n < \infty$.

Write $f(z) = (z - z_0)^m F(z)$ and $g(z) = (z - z_0)^n G(z)$, where F and G are analytic at z_0 with $F(z_0) \neq 0$ and $G(z_0) \neq 0$.

Then $f(z) + g(z) = (z - z_0)^{\ell} H(z)$ where $\ell = \min\{m, n\}$ and $H(z) = (z - z_0)^{m-\ell} F(z) + (z - z_0)^{n-\ell} G(z)$. Since $\ell \leq m$ and $\ell \leq n$, we have $m - \ell \geq 0$ and $n - \ell \geq 0$, and hence H is analytic at z_0 .

Let $k' \ge 0$ be the order of the zero of H at z_0 . (We have $k' \ge 0$ since H is analytic at z_0).

Then the order k of the zero of f + g at z_0 is $k = \ell + k' \ge \ell$.

QED

(b): Without loss of generality, assume m < n. Then $\min\{m, n\} = m$. If $n = \infty$, then g = 0 and so f + g = f has a zero of order $m = \min\{m, n\}$ at z_0 , as desired. So we may assume that $m < n < \infty$ for the rest of the proof. Writing $f(z) = (z - z_0)^m F(z)$ and $g(z) = (z - z_0)^n G(z)$ as in part (a), we have $f(z) + g(z) = (z - z_0)^m H(z)$ where $H(z) = F(z) + (z - z_0)^{n-m} G(z)$. Thus, H is analytic at z_0 , and $H(z_0) = F(z_0) + 0^{n-m} G(z_0) = F(z_0) \neq 0$, since n - m > 0. Hence, the order k of the zero of f + g at z_0 is $k = m = \min\{m, n\}$. QED

(c): There are many examples that would work, but the easiest one is probably this: Let $z_0 = 0$, let f(z) = z, and let g(z) = -z. Then f and g both have zeros of order 1 at z = 0, but f + g = 0 has a zero of order ∞ there.

[If you want to cover all possible combinations of m = n < k, use $f = z^n$ and $g = -z^n$ if $k = \infty$ (so that f + g = 0), or use $f = z^n$ and $g = z^k - z^n$ (so that $f + g = z^k$) if $n < k < \infty$.]