
Math 345, Fall 2024

Solutions to Homework #16

Problem 1. V.6, #2. Calculate the terms through order five (i.e., up to and including the z5 term)
of the power series expansion centered at z = 0 of the function f(z) = z/ sin z.

Solution. We know sin z = z − z3
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+
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+
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Problem 2. V.6, #3. Write the power series expansion (centered at 0) of f(z) =
ez

1 + z
as f(z) =

∞∑
n=0

anz
n.

(a) Prove that a0 = 1, a1 = 0, and an = (−1)n
[
1

2!
− 1

3!
+ · · ·+ (−1)n

n!

]
for all n ≥ 2.

(b) Find the radius of convergence of this series (and of course prove your answer).

Solutions/Proofs. (a):

(Method 1): We have ez =
∞∑
k=0

1

k!
zk and

1

1 + z
=

∞∑
m=0

(−1)mzm, so by formula (6.1) on page 152 for

the product of two series, we have
∞∑
n=0

anz
n = ez · 1

1 + z
=

∞∑
n=0

( n∑
k=0

1

k!
· (−1)n−k

)
zn.

Thus, for each n ≥ 0, we have an =
n∑

k=0

1

k!
· (−1)n−k = (−1)n

n∑
k=0

(−1)k

k!
.

For n = 0, this formula gives a0 =
1

0!
= 1, and for n = 1, it gives a1 = (−1)

(
1

0!
− 1

1!

)
= 1− 1 = 0, as

desired. For n ≥ 2, we have:
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(
1

0!
− 1

1!
+

1

2!
− · · ·+ (−1)n

n!

)
= (−1)n

[
1

2!
− 1

3!
+ · · ·+ (−1)n

n!

]
QED

(a), (Method 2): We have (1 + z)
∞∑
n=0

anz
n = ez =

∞∑
n=0

1

n!
zn.

The sum on the left is

∞∑
n=0

anz
n +

∞∑
n=0

anz
n+1 =

∞∑
n=0

anz
n +

∞∑
n=1

an−1z
n = a0 +

∞∑
n=1

(an + an−1)z
n.

Thus, we have a0 +
∞∑
n=1

(an + an−1)z
n =

∞∑
n=0

1

n!
zn. Equivalently, a0 =

1

0!
= 1, and for each n ≥ 1, we

have an =
1

n!
− an−1.



Hence, for n = 1, we have a1 =
1

1!
− a0 = 1− 1 = 0.

We now prove the desired equality for n ≥ 2 by induction.

For n = 2, our formula gives a2 =
1

2!
− a1 =

1

2!
= (−1)2

[
1

2!

]
, verifying the desired equality for n = 2.

Assuming the equality holds for n− 1, our formula for n gives

an =
1

n!
− an−1 =

1

n!
− (−1)n−1

[
1

2!
− 1

3!
+ · · ·+ (−1)n−1

(n− 1)!

]
=

1

n!
+ (−1)n

[
1

2!
− 1

3!
+ · · ·+ (−1)n−1

(n− 1)!

]
= (−1)n

[
1

2!
− 1

3!
+ · · ·+ (−1)n−1

(n− 1)!
+

(−1)n

n!

]
QED

(b): The function f(z) is analytic on C∖ {−1}, and because lim
z→−1

|f(z)| = ∞ (since the denominator

1 + z approaches 0 and the numerator approaches 1/e ̸= 0), it follows that no extension of f can be
analytic at −1.
Thus, the largest R > 0 such that f is analytic on D(0, R) is R = | − 1 − 0| = 1. Therefore, by the

second Corollary on page 146, the radius of convergence of this power series is R = 1

Problem 3. V.7, #1(b,c,e). Find the zeros, and the orders of those zeros, of the following functions.

(b)
1

z
+

1

z5
(c) z2 sin z (e)

cos z − 1

z

Solutions. (a): Call this function f(z), which we rewrite as f(z) =
z4 + 1

z5
.

Thus the zeros of f are the roots of z4 = −1, i.e., ±eiπ/4 and ±e−iπ/4

[Note: there are other ways to write this, such as
1

2
(±1± i) and as ei(π/4+jπ/2) for j = 0, 1, 2, 3, among

other ways.]

We also have f ′(z) = −z−2 − 5z−6 =
−(z4 + 5)

z6
. Thus, at each of the zeros zj of f , since z4j = −1, we

have f ′(zj) =
−(−1 + 5)

z6j
=

−4

z6j
̸= 0. Hence, each of the four roots of f has order 1 as a zero of f

(b): Let g(z) = z2 sin z, which we write as g1(z) · g2(z), where g1(z) = z2 and g2(z) = sin z.

Note that g1(z) = z2 has a zero only at z = 0, where the order of the zero is 2, since g1 = z2 · 1.
Also observe that g2(z) = sin z has zeros at nπ for n ∈ Z. We have g′2(z) = cos(z), so g′2(nπ) = ±1 ̸= 0.
Thus, each of these zeros of g2 has order 1.

Recall (from page 155) that for any point z0, the order of the zero of the product g = g1g2 at z0 is the
sum of the orders of the zeros of g1 and g2 at z0.

Thus, g has a zero of order 1 + 2 = 3 at z = 0 and a zero of order 1 at each z = nπ for n ∈ Z ∖ {0}

(c): Write h(z) =
cos z − 1

z
=

h1(z)

h2(z)
, where h1(z) = cos z − 1 and h2(z) = z.

Solving h1(z) = 0 gives z = 2πn for n ∈ Z. Note that h′1(z) = − sin z satisfies h′1(2πn) = 0 for all
n ∈ Z, but h′′1(z) = − cos z has h′′1(2πn) = −1 ̸= 0. Thus, h1 has zeros of order 2 at each point z = 2πn
for n ∈ Z, and no other zeros.

On the other hand, h2(z) = z has a zero of order 1 at z = 0, and no other zeros. Since h1 has a zero of
order 2 there, we may write h1(z) = z2H(z) with H analytic at 0 and H(0) ̸= 0. Thus, h(z) = zH(z),
so that h has a zero of order 1 at z = 0.
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Thus, h has a zero of order 1 at z = 0 and a zero of order 2 at each z = 2nπ for n ∈ Z ∖ {0}

Problem 4. V.7, #6. Let f be analytic on a domain D, and let z0 ∈ D. Suppose that f (m)(z0) = 0
for all m ≥ 1. Prove that f is constant on D.

Proof. There is some r > 0 so that D(z0, r) ⊆ D.

Let c = f(z0). Then the analytic function g(z) = f(z) − c has g(z0) and g(m)(z0) = 0 for all m ≥ 1.
That is, g(m)(z0) = 0 for all m ≥ 0.

Since g is equal to its Taylor series on the disk D(z0, r) (by the Taylor series Theorem on page 144),
it follows that g is identically zero on D(z0, r).

In particular, z0 is a non-isolated zero of g. Therefore, by the Theorem on page 156, g is identically
zero on all of D. Thus, f = g + c is identically equal to c on all of D. That is, f is constant. QED

Problem 5. V.7, #8. Let f and g be analytic functions on a domain D, and let z0 ∈ D. Suppose
that f has a zero of order m ≥ 0 at z0, and g has a zero of order n ≥ 0 at z0. Let k be the order of
the zero of the function f(z) + g(z) at z0.

(a) Prove that k ≥ min{m,n}.
(b) If m ̸= n, prove that k = min{m,n}.
(c) Give an example to show that we can have k > min{m,n} in the case that m = n.

Proofs/Solutions. (a): First, if m = ∞, then f = 0 and k = n, so we have f + g = g has a zero of
order n = k at z0, as desired. Similarly, if n = ∞, then by similar reasoning with the roles reversed,
we have that f + g = f has a zero of order m = k at z0.

For the remainder of the proof, then, we may assume that m,n < ∞.

Write f(z) = (z−z0)
mF (z) and g(z) = (z−z0)

nG(z), where F and G are analytic at z0 with F (z0) ̸= 0
and G(z0) ̸= 0.

Then f(z)+g(z) = (z−z0)
ℓH(z) where ℓ = min{m,n} and H(z) = (z−z0)

m−ℓF (z)+(z−z0)
n−ℓG(z).

Since ℓ ≤ m and ℓ ≤ n, we have m− ℓ ≥ 0 and n− ℓ ≥ 0, and hence H is analytic at z0.

Let k′ ≥ 0 be the order of the zero of H at z0. (We have k′ ≥ 0 since H is analytic at z0).

Then the order k of the zero of f + g at z0 is k = ℓ+ k′ ≥ ℓ. QED

(b): Without loss of generality, assume m < n. Then min{m,n} = m.
If n = ∞, then g = 0 and so f + g = f has a zero of order m = min{m,n} at z0, as desired.
So we may assume that m < n < ∞ for the rest of the proof.
Writing f(z) = (z − z0)

mF (z) and g(z) = (z − z0)
nG(z) as in part (a), we have

f(z) + g(z) = (z − z0)
mH(z) where H(z) = F (z) + (z − z0)

n−mG(z).

Thus, H is analytic at z0, and H(z0) = F (z0) + 0n−mG(z0) = F (z0) ̸= 0, since n−m > 0.
Hence, the order k of the zero of f + g at z0 is k = m = min{m,n}. QED

(c): There are many examples that would work, but the easiest one is probably this:
Let z0 = 0, let f(z) = z, and let g(z) = −z. Then f and g both have zeros of order 1 at z = 0, but
f + g = 0 has a zero of order ∞ there.

[If you want to cover all possible combinations of m = n < k, use f = zn and g = −zn if k = ∞ (so
that f + g = 0), or use f = zn and g = zk − zn (so that f + g = zk) if n < k < ∞.]
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