Math 345, Fall 2024

Solutions to Homework #16

Problem 1. V.6, $\#2$. Calculate the terms through order five (i.e., up to and including the z^5 term) of the power series expansion centered at $z = 0$ of the function $f(z) = z/\sin z$.

Solution. We know $\sin z = z - \frac{z^3}{2!}$ $rac{z^3}{3!} + \frac{z^5}{5!}$ $\frac{z}{5!} + O(z^7).$ Therefore, $\frac{\sin z}{z} = 1 - \frac{z^2}{3!}$ $rac{z^2}{3!} + \frac{z^4}{5!}$ $\frac{z}{5!} + O(z^6)$. Hence, z $\frac{z}{\sin z} = \frac{1}{(\sin z)/z} = \frac{1}{z^2 + z^2}$ $1-\frac{z^2}{2!}$ $rac{z^2}{3!} + \frac{z^4}{5!}$ $\frac{z}{5!} + O(z^6)$ $=\frac{1}{\sqrt{2}}$ $1-\left(\frac{z^2}{2!}\right)$ $rac{z^2}{3!} - \frac{z^4}{5!}$ $\left(\frac{z^4}{5!}+O(z^6)\right)$ $= 1 + \left(\frac{z^2}{2!}\right)$ $rac{z^2}{3!} - \frac{z^4}{5!}$ $\left(\frac{z^4}{5!}+O(z^6)\right)+\left(\frac{z^2}{3!}\right)$ $rac{z^2}{3!} - \frac{z^4}{5!}$ $\left(\frac{z^4}{5!}+O(z^6)\right)^2+\left(\frac{z^2}{3!}\right)$ $rac{z^2}{3!} - \frac{z^4}{5!}$ $\frac{z^4}{5!} + O(z^6)$ + ... $= 1 + \left(\frac{z^2}{2!}\right)$ $\left(\frac{z^2}{3!} - \frac{z^4}{5!}\right) + \left(\frac{z^2}{3!}\right)$ $\frac{z^2}{3!} - \frac{z^4}{5!}$ $\bigg)^2$ + $O(z^6) = 1 + \frac{z^2}{3!}$ $rac{z^2}{3!} - \frac{z^4}{5!}$ $\frac{z^4}{5!} + \left(\frac{z^2}{3!}\right)^2 + O(z^6)$ $= 1 + \frac{z^2}{6}$ $\frac{z^2}{6} - \frac{z^4}{120}$ $rac{z^4}{120} + \frac{z^4}{36}$ $rac{z^4}{36} + O(z^6) = \left| 1 + \frac{1}{6}z^2 + \frac{7}{36} \right|$ $\frac{1}{360}z^4 + O(z^6)$

Problem 2. V.6, #3. Write the power series expansion (centered at 0) of $f(z) = \frac{e^z}{z-1}$ $\frac{c}{1+z}$ as $f(z) =$ $\sum_{n=1}^{\infty} a_n z^n$. $n=0$

(a) Prove that
$$
a_0 = 1
$$
, $a_1 = 0$, and $a_n = (-1)^n \left[\frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^n}{n!} \right]$ for all $n \ge 2$.

(b) Find the radius of convergence of this series (and of course prove your answer).

Solutions/Proofs. (a):

(Method 1): We have $e^z = \sum_{i=1}^{\infty} \frac{1}{i!}$ $_{k=0}$ $\frac{1}{k!}z^k$ and $\frac{1}{1+z} = \sum_{m=0}^{\infty} (-1)^m z^m$, so by formula (6.1) on page 152 for $m=0$ the product of two series, we have $\sum_{n=1}^{\infty}$ $n=0$ $a_n z^n = e^z \cdot \frac{1}{1+}$ $\frac{1}{1+z} = \sum_{n=0}^{\infty}$ $n=0$ $\left(\sum_{n=1}^{\infty}\right)$ $_{k=0}$ 1 $\frac{1}{k!} \cdot (-1)^{n-k} \bigg) z^n.$ Thus, for each $n \geq 0$, we have $a_n = \sum_{n=1}^n a_n$ $_{k=0}$ 1 $\frac{1}{k!} \cdot (-1)^{n-k} = (-1)^n \sum_{k=0}^n$ $_{k=0}$ $(-1)^k$ $\frac{1}{k!}$. For $n = 0$, this formula gives $a_0 = \frac{1}{0!} = 1$, and for $n = 1$, it gives $a_1 = (-1)\left(\frac{1}{0!} - \frac{1}{1!}\right) = 1 - 1 = 0$, as desired. For $n \geq 2$, we have $a_n = (-1)^n \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \cdots + \right)$ $(-1)^n$ n! $\bigg) = (-1)^n \left[\frac{1}{2!} - \frac{1}{3!} + \cdots \right]$ $(-1)^n$ n! 1 QED (a), (Method 2): We have $(1+z)\sum_{n}^{\infty}a_nz^n=e^z=\sum_{n}^{\infty}\frac{1}{n}$ The sum on the left is $\sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} a_n z^{n+1} = \sum_{n=0}^{\infty} a_n z^n$ $rac{1}{n!}z^n$. $n=0$ $a_n z^n + \sum_{n=1}^{\infty}$ $n=0$ $a_n z^{n+1} = \sum^\infty$ $n=0$ $a_n z^n + \sum_{n=1}^{\infty}$ $n=1$ $a_{n-1}z^n = a_0 + \sum_{n=1}^{\infty} a_n$ $n=1$ $(a_n + a_{n-1})z^n$. Thus, we have $a_0 + \sum_{n=1}^{\infty}$ $n=1$ $(a_n + a_{n-1})z^n = \sum_{n=0}^{\infty}$ $n=0$ 1 $\frac{1}{n!}z^n$. Equivalently, $a_0 = \frac{1}{0!} = 1$, and for each $n \ge 1$, we have $a_n = \frac{1}{n}$ $\frac{1}{n!} - a_{n-1}.$

Hence, for $n = 1$, we have $a_1 = \frac{1}{1!} - a_0 = 1 - 1 = 0$. We now prove the desired equality for $n \geq 2$ by induction.

For $n = 2$, our formula gives $a_2 = \frac{1}{2!} - a_1 = \frac{1}{2!} = (-1)^2 \left[\frac{1}{2!} \right]$, verifying the desired equality for $n = 2$. Assuming the equality holds for $n - 1$, our formula for n gives

$$
a_n = \frac{1}{n!} - a_{n-1} = \frac{1}{n!} - (-1)^{n-1} \left[\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!} \right]
$$

= $\frac{1}{n!} + (-1)^n \left[\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!} \right] = (-1)^n \left[\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!} + \frac{(-1)^n}{n!} \right]$ QED

(b): The function $f(z)$ is analytic on $\mathbb{C} \setminus \{-1\}$, and because $\lim_{z \to -1} |f(z)| = \infty$ (since the denominator $1 + z$ approaches 0 and the numerator approaches $1/e \neq 0$, it follows that no extension of f can be analytic at -1 .

Thus, the largest $R > 0$ such that f is analytic on $D(0, R)$ is $R = |-1 - 0| = 1$. Therefore, by the second Corollary on page 146, the radius of convergence of this power series is $|R=1|$

Problem 3. V.7, $\#1(b,c,e)$. Find the zeros, and the orders of those zeros, of the following functions. (**b**) $\frac{1}{z} + \frac{1}{z^{\xi}}$ z^5 (c) z^2 $\sin z$ (e) $\frac{\cos z - 1}{z}$

Solutions. (a): Call this function $f(z)$, which we rewrite as $f(z) = \frac{z^4 + 1}{5}$ $\frac{1}{z^5}$. Thus the zeros of f are the roots of $z^4 = -1$, i.e., $\left| \pm e^{i\pi/4} \right|$ and $\pm e^{-i\pi/4}$ [Note: there are other ways to write this, such as $\frac{1}{2}(\pm 1 \pm i)$ and as $e^{i(\pi/4 + j\pi/2)}$ for $j = 0, 1, 2, 3$, among other ways.]

We also have $f'(z) = -z^{-2} - 5z^{-6} = \frac{-(z^4 + 5)}{6}$ $\frac{+3j}{z^6}$. Thus, at each of the zeros z_j of f, since $z_j^4 = -1$, we have $f'(z_j) = \frac{-(-1+5)}{z_j^6}$ $=\frac{-4}{6}$ z_j^6 $\neq 0$. Hence, each of the four roots of f has order 1 as a zero of f

(b): Let $g(z) = z^2 \sin z$, which we write as $g_1(z) \cdot g_2(z)$, where $g_1(z) = z^2$ and $g_2(z) = \sin z$. Note that $g_1(z) = z^2$ has a zero only at $z = 0$, where the order of the zero is 2, since $g_1 = z^2 \cdot 1$. Also observe that $g_2(z) = \sin z$ has zeros at $n\pi$ for $n \in \mathbb{Z}$. We have $g'_2(z) = \cos(z)$, so $g'_2(n\pi) = \pm 1 \neq 0$. Thus, each of these zeros of g_2 has order 1.

Recall (from page 155) that for any point z_0 , the order of the zero of the product $g = g_1 g_2$ at z_0 is the sum of the orders of the zeros of g_1 and g_2 at z_0 .

Thus, g has a zero of order $1 + 2 = 3$ at $z = 0$ and \boxed{a} zero of order 1 at each $z = n\pi$ for $n \in \mathbb{Z} \setminus \{0\}$

(c): Write $h(z) = \frac{\cos z - 1}{z} = \frac{h_1(z)}{h_2(z)}$ $\frac{h_1(z)}{h_2(z)}$, where $h_1(z) = \cos z - 1$ and $h_2(z) = z$.

Solving $h_1(z) = 0$ gives $z = 2\pi n$ for $n \in \mathbb{Z}$. Note that $h'_1(z) = -\sin z$ satisfies $h'_1(2\pi n) = 0$ for all $n \in \mathbb{Z}$, but $h''_1(z) = -\cos z$ has $h''_1(2\pi n) = -1 \neq 0$. Thus, h_1 has zeros of order 2 at each point $z = 2\pi n$ for $n \in \mathbb{Z}$, and no other zeros.

On the other hand, $h_2(z) = z$ has a zero of order 1 at $z = 0$, and no other zeros. Since h_1 has a zero of order 2 there, we may write $h_1(z) = z^2 H(z)$ with H analytic at 0 and $H(0) \neq 0$. Thus, $h(z) = zH(z)$, so that h has a zero of order 1 at $z = 0$.

Thus, h has a zero of order 1 at $z = 0$ and a zero of order 2 at each $z = 2n\pi$ for $n \in \mathbb{Z} \setminus \{0\}$

Problem 4. V.7, #6. Let f be analytic on a domain D, and let $z_0 \in D$. Suppose that $f^{(m)}(z_0) = 0$ for all $m \geq 1$. Prove that f is constant on D.

Proof. There is some $r > 0$ so that $D(z_0, r) \subseteq D$.

Let $c = f(z_0)$. Then the analytic function $g(z) = f(z) - c$ has $g(z_0)$ and $g^{(m)}(z_0) = 0$ for all $m \ge 1$. That is, $g^{(m)}(z_0) = 0$ for all $m \ge 0$.

Since g is equal to its Taylor series on the disk $D(z_0, r)$ (by the Taylor series Theorem on page 144), it follows that g is identically zero on $D(z_0, r)$.

In particular, z_0 is a non-isolated zero of g. Therefore, by the Theorem on page 156, g is identically zero on all of D. Thus, $f = g + c$ is identically equal to c on all of D. That is, f is constant. QED

Problem 5. V.7, #8. Let f and g be analytic functions on a domain D, and let $z_0 \in D$. Suppose that f has a zero of order $m \geq 0$ at z_0 , and g has a zero of order $n \geq 0$ at z_0 . Let k be the order of the zero of the function $f(z) + g(z)$ at z_0 .

(a) Prove that $k \geq \min\{m, n\}.$

(b) If $m \neq n$, prove that $k = \min\{m, n\}.$

(c) Give an example to show that we can have $k > \min\{m, n\}$ in the case that $m = n$.

Proofs/Solutions. (a): First, if $m = \infty$, then $f = 0$ and $k = n$, so we have $f + q = q$ has a zero of order $n = k$ at z_0 , as desired. Similarly, if $n = \infty$, then by similar reasoning with the roles reversed, we have that $f + g = f$ has a zero of order $m = k$ at z_0 .

For the remainder of the proof, then, we may assume that $m, n < \infty$.

Write $f(z) = (z - z_0)^m F(z)$ and $g(z) = (z - z_0)^n G(z)$, where F and G are analytic at z_0 with $F(z_0) \neq 0$ and $G(z_0) \neq 0$.

Then $f(z) + g(z) = (z - z_0)^{\ell} H(z)$ where $\ell = \min\{m, n\}$ and $H(z) = (z - z_0)^{m-\ell} F(z) + (z - z_0)^{n-\ell} G(z)$. Since $\ell \leq m$ and $\ell \leq n$, we have $m - \ell \geq 0$ and $n - \ell \geq 0$, and hence H is analytic at z_0 .

Let $k' \geq 0$ be the order of the zero of H at z_0 . (We have $k' \geq 0$ since H is analytic at z_0).

Then the order k of the zero of $f + g$ at z_0 is $k = \ell + k' \geq \ell$. $\prime \geq \ell.$ QED

(b): Without loss of generality, assume $m < n$. Then $\min\{m, n\} = m$. If $n = \infty$, then $g = 0$ and so $f + g = f$ has a zero of order $m = \min\{m, n\}$ at z_0 , as desired. So we may assume that $m < n < \infty$ for the rest of the proof. Writing $f(z) = (z - z_0)^m F(z)$ and $g(z) = (z - z_0)^n G(z)$ as in part (a), we have $f(z) + g(z) = (z - z_0)^m H(z)$ where $H(z) = F(z) + (z - z_0)^{n-m} G(z)$. Thus, H is analytic at z_0 , and $H(z_0) = F(z_0) + 0^{n-m} G(z_0) = F(z_0) \neq 0$, since $n - m > 0$. Hence, the order k of the zero of $f + g$ at z_0 is $k = m = \min\{m, n\}$. QED

(c): There are many examples that would work, but the easiest one is probably this: Let $z_0 = 0$, let $f(z) = z$, and let $g(z) = -z$. Then f and g both have zeros of order 1 at $z = 0$, but $f + g = 0$ has a zero of order ∞ there.

[If you want to cover all possible combinations of $m = n < k$, use $f = z^n$ and $g = -z^n$ if $k = \infty$ (so that $f + g = 0$, or use $f = z^n$ and $g = z^k - z^n$ (so that $f + g = z^k$) if $n < k < \infty$.]