Math 345, Fall 2024
Solutions to Homework #16

Problem 1. V.6, #2. Calculate the terms through order five (i.e., up to and including the 2% term)
of the power series expansion centered at z = 0 of the function f(z) = z/sin z.
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Solution. We know sinz = z — % + % +0(27).
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Therefore, ? =1- % + % + O(2%). Hence,
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Problem 2. V.6, #3. Write the power series expansion (centered at 0) of f(z) = T35 f(z) =
. z
Z anz".
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(a) Prove that ag =1, a1 =0, and a, = (—1) §_§+"'+ — | foralln > 2.
(b) Find the radius of convergence of this series (and of course prove your answer).
Solutions/Proofs. (a):
(Method 1): We have e* = — 2% and = Z (—1)"™z™, so by formula (6.1) on page 152 for
k! 1+=
k=0 m=0
the product of two series, we have Z anz" = e - 5= Z < "l (—1)"_k>z”.
n=0 n=0 *k=0
~ 1 —k ~ (=1)*
Thus, for each n > 0, we have a,, = Z h (=) =(-1)" o
k=0 k=0
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For n = 0, this formula gives ag = 0= 1, and for n = 1, it gives a; = (—1) <O' — 1'> =1-1=0,as
desired. For n > 2, we have:
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The sum on the left is Z anz™ + Z an2" T = Z anz" + Z np_12" = ap + Z(an + an-1)z".
n=0 n=1 n=1

Oon:() n=0 - . .
Thus, we have ag + Z(an + ap—1)z" = Z —2". Equivalently, ap = — = 1, and for each n > 1, we
—~ o n! 0!

have a,, = — — ap—1.
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We now prove the desired equality for n > 2 by induction.

Hence, for n = 1, we have a1 =
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For n = 2, our formula gives as = o T =g = (—1)? [2'] , verifying the desired equality for n = 2.

Assuming the equality holds for n — 1, our formula for n gives
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(b): The function f(z) is analytic on C \ {—1}, and because lim1 |f(2)| = oo (since the denominator
2——

1 + z approaches 0 and the numerator approaches 1/e # 0), it follows that no extension of f can be
analytic at —1.

Thus, the largest R > 0 such that f is analytic on D(0,R) is R = | — 1 — 0| = 1. Therefore, by the
second Corollary on page 146, the radius of convergence of this power series is

Problem 3. V.7, #1(b,c,e). Find the zeros, and the orders of those zeros, of the following functions.
1 1 cosz —1
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Solutions. (a): Call this function f(z), which we rewrite as f(z) = —
z

Thus the zeros of f are the roots of z* = —1, i.e., +e'™/* and te /4

1 } )
[Note: there are other ways to write this, such as 5(:&1 +1i) and as ' ("/4H37/2) for j = 0,1,2,3, among

other ways.]
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We also have f/(z) = —2z72 5270 = w. Thus, at each of the zeros z; of f, since z;-l =—1, we
z
—(-1 —4
have f'(z;) = % = — # 0. Hence, ‘each of the four roots of f has order 1 as a zero of f‘
Zj %

(b): Let g(z) = z?sin z, which we write as g1(z) - g2(2), where g1(z) = 22 and g2(2) = sin 2.

Note that g1(z) = 22 has a zero only at z = 0, where the order of the zero is 2, since g; = 22 - 1.
Also observe that ga(z) = sin z has zeros at nx for n € Z. We have gh(z) = cos(z), so gh(nm) = £1 # 0.
Thus, each of these zeros of go has order 1.

Recall (from page 155) that for any point zg, the order of the zero of the product g = g1g2 at zg is the
sum of the orders of the zeros of g; and g2 at zg.

Thus,ghas‘a zero of order 1 +2 =3 at z zo‘and‘a zero of order 1 at each z = nrw for n € Z \ {0}‘

(c): Write h(z)

_cosz—1  hi(z)
B z  ha(2)
Solving hi(z) = 0 gives z = 2mn for n € Z. Note that h(z) = —sin z satisfies h|(27n) = 0 for all
n € Z, but hY(z) = — cos z has h{(2mn) = —1 # 0. Thus, h; has zeros of order 2 at each point z = 27n
for n € Z, and no other zeros.

, where hj(z) = cosz — 1 and ha(z) = 2.

On the other hand, ha(z) = z has a zero of order 1 at z = 0, and no other zeros. Since h; has a zero of
order 2 there, we may write hi(z) = 22H(2) with H analytic at 0 and H(0) # 0. Thus, h(z) = zH(2),
so that h has a zero of order 1 at z = 0.



Thus, h has ‘a zero of order 1 at z = 0‘ and ‘ a zero of order 2 at each z = 2nw for n € Z ~ {0} ‘

Problem 4. V.7, #6. Let f be analytic on a domain D, and let zg € D. Suppose that f("™)(z5) =0
for all m > 1. Prove that f is constant on D.

Proof. There is some r > 0 so that D(zo,r) C D.

Let ¢ = f(zp). Then the analytic function g(z) = f(z) — ¢ has g(zp) and g(™)(zy) = 0 for all m > 1.
That is, g™ (29) = 0 for all m > 0.

Since g is equal to its Taylor series on the disk D(zp,r) (by the Taylor series Theorem on page 144),
it follows that g is identically zero on D(zg, 7).

In particular, zg is a non-isolated zero of g. Therefore, by the Theorem on page 156, g is identically
zero on all of D. Thus, f = g 4 ¢ is identically equal to ¢ on all of D. That is, f is constant. QED

Problem 5. V.7, #8. Let f and g be analytic functions on a domain D, and let zg € D. Suppose
that f has a zero of order m > 0 at zg, and ¢ has a zero of order n > 0 at zy. Let k be the order of
the zero of the function f(z) + g(2) at zo.

(a) Prove that k& > min{m,n}.

(b) If m # n, prove that k = min{m,n}.

(c) Give an example to show that we can have k > min{m,n} in the case that m = n.
Proofs/Solutions. (a): First, if m = oo, then f =0 and k = n, so we have f + g = g has a zero of

order n = k at zg, as desired. Similarly, if n = oo, then by similar reasoning with the roles reversed,
we have that f + g = f has a zero of order m = k at zg.

For the remainder of the proof, then, we may assume that m,n < co.

Write f(z) = (z—20)™F(z) and g(z) = (z—20)"G(z), where F and G are analytic at zo with F'(zp) # 0
and G(zp) # 0.

Then f(2)+g(z) = (2 —20)*H(z) where £ = min{m,n} and H(z) = (2 —20)™ *F(2) + (2 — 20)" ‘G (2).
Since £ < m and £ <n, we have m — £ > 0 and n — £ > 0, and hence H is analytic at z.

Let k¥ > 0 be the order of the zero of H at zy. (We have k¥’ > 0 since H is analytic at zg).

Then the order k of the zero of f +g at zgisk=0+Fk > (. QED

(b): Without loss of generality, assume m < n. Then min{m,n} = m.

If n = oo, then ¢ = 0 and so f + g = f has a zero of order m = min{m,n} at zp, as desired.

So we may assume that m < n < oo for the rest of the proof.

Writing f(z) = (2 — 20)™F(2) and ¢(z) = (z — 20)"G(z) as in part (a), we have

f(2) +9(2) = (z = 20)"H(2) where H(z) = F(2) + (z — 20)" " "G(2).

Thus, H is analytic at zg, and H(z9) = F'(z0) + 0""™G(20) = F(29) # 0, since n —m > 0.

Hence, the order k of the zero of f + g at zp is k = m = min{m, n}. QED

(c): There are many examples that would work, but the easiest one is probably this:
Let zo = 0, let f(z) = 2, and let g(2) = —z. Then f and g both have zeros of order 1 at z = 0, but
f 4+ g =0 has a zero of order co there.

[If you want to cover all possible combinations of m =n < k, use f = 2" and g = —2" if k = oo (so
that f4+ g =0), or use f = 2" and g = 2F — 2™ (so that f + g = 2F) if n < k < 00.]



