Math 345, Fall 2024

Solutions to Homework #15

oo
Problem 1. V.3, #7. Consider the series Y _ (2 + (~1)%)"2*.

k=0
(a) Use the Cauchy-Hadamard formula to find the radius of convergence of this series.

(b) What happens when the ratio test is applied?
(c) Explicitly evaluate the sum of the series.

1 if k is odd,

Solution /Proof. Let a; = (2 + (—1)* ¥ That is, ap =
/ ¥ ( ( )) ¥ {3”C if k is even.

Part (a): We compute
limsup {/|ag| = lim sup <{\k/ﬂk >nodd} U {\/IC 3|k >n even})
k—o0 n—oo

= lim max{1,3} = lim 3 =3.
n—oo n—oo

Hence, by Cauchy-Hadamard, the radius of convergence is 1/3.

Part (b): If we apply the ratio test, we have

a 1 a
Pl= g forkodd, || =3"for k even.
k41 3t g1
Thus, lim diverges, since the odd terms go to 0, and the even terms go to co. That is, the
k—oo |Qk11

ratio test is inconclusive.

Part (c): To sum the series, sum the even and odd terms separately. That is, writing k& = 2n for the
even terms, and k = 2n + 1 for the odd terms, the Geometric Series Test yields

o o) o 1 >
k _ 2n _2n 2n+1 __

Zakz —23 z ~I—Zz = 1—922+1—z2

k=0 n=0 n=0

Problem 2. V.4 #1(a,b,d). Find the radius of convergence of the power series for each of the following
functions, expanding about the indicated point.

1 1
(a) ——, about z =1 (b) , about z =10 (d) Log z, about z =1+ 2i
z—1 COS 2

1
Solutions. (a): Note that |1 —i| = /2. Therefore, f(2) = . is analytic on D(i,+/2) but blows
S

up at the point z = 1 at distance v/2 from i.

Therefore, by the second Corollary on page 146, the radius of convergence is | v/2

(b): The function cos z has zeros at all odd multiples of 7/2 and nowhere else.
1
Therefore, f(z) = .

0S Z

is analytic on D(0,7/2) but blows up at the points z = £7/2 at distance 7/2

from 0.
Therefore, by the second Corollary on page 146, the radius of convergence is

(c): The function Log z fails to be analytic at z = 0, which is at distance |1 + 2i| = v/5 from 1 + 2.



At the same time, Log z is analytic on a region (e.g., the slit plane) containing the disk D(1 4 2i,+/5).

Therefore, by the second Corollary on page 146, the radius of convergence is | v/5

2
-1
Problem 3. V.4 #2. Prove that the radius of convergence of the power series expansion of Z3 1
23
about z = 2is R = /7.

2

Proof. Let f(z) = 2371, and then, cancelling a factor of z—1 from both numerator and denominator,
23
z+1
let ==\
Note that g is analytic on a larger domain than f is — ¢ is defined at 1, in particular — but there

cannot an analytic extension of either function that is analytic at either of the roots of 22 + z + 1,
since the value of |g(z)| blows up to oo at those points.

-1+yI-4 1 V3

The roots of 22 + 2+ 1 are z = 5 =-3 + 71’, by the quadratic formula. Both of these
1\? 3\> [25 3
points are at distance \/<2 + 2> + <\2f) =\ ti= V7 from z = 2.

Thus, g is analytic on D(2,+/7), but no extension of g is analytic on any larger open disk.
Therefore, by the second Corollary on page 146, the radius of convergence is /7. QED

Problem 4. V.4 #3. Find the power series expansion of Log z about the point z = i — 2. Working
directly from this series, prove that its radius of convergence is R = v/5. Explain why this does not
contradict the discontinuity of Log z at z = —2.

Solution/Proof. Let f(z) = Logz. Then f’(z) = 2!, so that f”(z) = —272 and f"'(z) = 2273, and
in general, f*)(2) = (=1)*1(k — 1)1z,

Thus, f(i — 2) = Log(i — 2), but for k > 1, we have f*)(i —2) = (=1)*1(k — 1)!(i — 2)*.

Therefore, by the Taylor series formula (4.1), (4.2) on page 144, we have

_1)\k—1 _ i— —k _1\k
f(z) = Log(i — 2) + ; an(z — (i — 2))¥, where aj, = (=)™ (k k:!l)!< 2) _ k;((z _1)2)k

Applying the ratio test (from page 141), the radius of convergence is

. k+1
= lim

k—oo k

R = lim i —2| = |i — 2| = V/5, as claimed.

Ak+1

This does not contract the discontinuity of Log z at —2 (and along the slit (—oo, 0]), because there is
a different analytic branch of log z — say, with arg z € (0,27), which has branch cut along [0,00) —
for which the disk D(i — 2, \/5) is contained in the domain.

Problem 5. V.4, #12. Let f(z) be an analytic function with power series expansion Y | a,z".

If f is an even function (i.e., f(—z) = f(2)), prove that a,, = 0 for all n odd.

If f is an odd function (i.e., f(—z) = —f(2)), prove that a, = 0 for all n even.

Proof. Define g(z) = f(—z). Then by the Chain Rule, we have ¢'(z) = — f'(—2) and ¢"(z) = f"(—=2);
proceeding inductively, we have g*)(z) = (=1)F f(*)(2).

Thus, for any k > 0, we have ¢®)(0) = (=1)* f(¥)(0).



Since g is also analytic, we may write g(z) = > b,2". By the Theorem on page 144, we have

) (0 () (0
an = ! |< ) and b, = g '( ) It follows that b, = (—1)"a, for all n > 0.
n. n!

Case 1: f is even. Then g = f, and hence, by the uniqueness of power series expansions (via the
first Corollary on page 146), we have b, = a,, for all n.

On the other hand, by the above, for any n odd, we have b, = (—1)"a,, = —a,. That is, a,, = —ay,
and hence a,=0, as desired.

Case 2: f is odd. Then g = —f, and hence, by the uniqueness of power series expansions (via the
first Corollary on page 146), we have b,, = —a,, for all n.

On the other hand, by the above, for any n even, we have b, = (—1)"a,, = a,. That is, a, = —ay,
and hence a,=0, as desired. QED



