Math 345, Fall 2024

Solutions to Homework #15

Problem 1. V.3, #7. Consider the series $\sum_{k=1}^{\infty} (2 + (-1)^k)^k z^k$. $_{k=0}$

- (a) Use the Cauchy-Hadamard formula to find the radius of convergence of this series.
- (b) What happens when the ratio test is applied?
- (c) Explicitly evaluate the sum of the series.

Solution/Proof. Let $a_k = (2 + (-1)^k)^k$. That is, $a_k =$ $\int 1$ if k is odd, 3^k if k is even.

Part (a): We compute

$$
\limsup_{k \to \infty} \sqrt[k]{|a_k|} = \lim_{n \to \infty} \sup \left(\{ \sqrt[k]{1} | k \ge n \text{ odd} \} \cup \{ \sqrt[k]{3^k} | k \ge n \text{ even} \} \right)
$$

$$
= \lim_{n \to \infty} \max \{ 1, 3 \} = \lim_{n \to \infty} 3 = 3.
$$

Hence, by Cauchy-Hadamard, the radius of convergence is 1/3.

Part (b): If we apply the ratio test, we have

$$
\left|\frac{a_k}{a_{k+1}}\right| = \frac{1}{3^{k+1}} \text{ for } k \text{ odd}, \quad \left|\frac{a_k}{a_{k+1}}\right| = 3^k \text{ for } k \text{ even}.
$$

Thus, $\lim_{k \to \infty}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ a_k a_{k+1} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ diverges, since the odd terms go to 0, and the even terms go to ∞ . That is, the ratio test is inconclusive.

Part (c): To sum the series, sum the even and odd terms separately. That is, writing $k = 2n$ for the even terms, and $k = 2n + 1$ for the odd terms, the Geometric Series Test yields

$$
\sum_{k=0}^{\infty} a_k z^k = \sum_{n=0}^{\infty} 3^{2n} z^{2n} + \sum_{n=0}^{\infty} z^{2n+1} = \boxed{\frac{1}{1 - 9z^2} + \frac{z}{1 - z^2}}
$$

Problem 2. V.4 $\#1(a,b,d)$. Find the radius of convergence of the power series for each of the following functions, expanding about the indicated point.

(a)
$$
\frac{1}{z-1}
$$
, about $z = i$ (b) $\frac{1}{\cos z}$, about $z = 0$ (d) Log z, about $z = 1 + 2i$

Solutions. (a): Note that $|1 - i|$ = $\sqrt{2}$. Therefore, $f(z) = \frac{1}{z-1}$ is analytic on $D(i, \sqrt{2})$ but blows up at the point $z = 1$ at distance $\sqrt{2}$ from *i*.

Therefore, by the second Corollary on page 146, the radius of convergence is $\sqrt{2}$

(b): The function cos z has zeros at all odd multiples of $\pi/2$ and nowhere else.

Therefore, $f(z) = \frac{1}{\cos z}$ is analytic on $D(0, \pi/2)$ but blows up at the points $z = \pm \pi/2$ at distance $\pi/2$ from 0.

Therefore, by the second Corollary on page 146, the radius of convergence is $|\pi/2|$

(c): The function Log z fails to be analytic at $z = 0$, which is at distance $|1 + 2i|$ √ 5 from $1+2i$. At the same time, Log z is analytic on a region (e.g., the slit plane) containing the disk $D(1+2i,\sqrt{5})$. Therefore, by the second Corollary on page 146, the radius of convergence is $\sqrt{5}$

Problem 3. V.4 $\#2$. Prove that the radius of convergence of the power series expansion of $\frac{z^2-1}{z-1}$ $z^2 - 1$ about $z = 2$ is $R = \sqrt{7}$.

Proof. Let $f(z) = \frac{z^2 - 1}{z-1}$ $\frac{z}{z^3-1}$, and then, cancelling a factor of $z-1$ from both numerator and denominator, let $g(z) = \frac{z+1}{z^2 + z + 1}.$

Note that g is analytic on a larger domain than f is — g is defined at 1, in particular — but there cannot an analytic extension of either function that is analytic at either of the roots of $z^2 + z + 1$, since the value of $|g(z)|$ blows up to ∞ at those points.

The roots of
$$
z^2 + z + 1
$$
 are $z = \frac{-1 \pm \sqrt{1 - 4}}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$, by the quadratic formula. Both of these points are at distance $\sqrt{\left(2 + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{25}{4} + \frac{3}{4}} = \sqrt{7}$ from $z = 2$.

Thus, g is analytic on $D(2,$ 7), but no extension of g is analytic on any larger open disk. Therefore, by the second Corollary on page 146, the radius of convergence is $\sqrt{7}$.

7. QED

Problem 4. V.4 #3. Find the power series expansion of Log z about the point $z = i - 2$. Working directly from this series, prove that its radius of convergence is $R =$ √ 5. Explain why this does not contradict the discontinuity of Log z at $z = -2$.

Solution/Proof. Let $f(z) = \text{Log } z$. Then $f'(z) = z^{-1}$, so that $f''(z) = -z^{-2}$ and $f'''(z) = 2z^{-3}$, and in general, $f^{(k)}(z) = (-1)^{k-1}(k-1)!z^{-k}$.

Thus, $f(i-2) = \text{Log}(i-2)$, but for $k \geq 1$, we have $f^{(k)}(i-2) = (-1)^{k-1}(k-1)!(i-2)^{k}$.

Therefore, by the Taylor series formula (4.1), (4.2) on page 144, we have

$$
f(z) = \text{Log}(i-2) + \sum_{k \ge 1} a_k (z - (i-2))^k, \text{ where } a_k = \frac{(-1)^{k-1} (k-1)! (i-2)^{-k}}{k!} = \frac{(-1)^k}{k(i-2)^k}.
$$

Applying the ratio test (from page 141), the radius of convergence is

$$
R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \frac{k+1}{k} \cdot |i-2| = |i-2| = \sqrt{5}, \text{ as claimed.}
$$

This does not contract the discontinuity of Log z at -2 (and along the slit $(-\infty, 0]$), because there is a different analytic branch of $\log z$ — say, with $\arg z \in (0, 2\pi)$, which has branch cut along $[0, \infty)$ for which the disk $D(i-2, \sqrt{5})$ is contained in the domain.

Problem 5. V.4, #12. Let $f(z)$ be an analytic function with power series expansion $\sum a_n z^n$. If f is an even function (i.e., $f(-z) = f(z)$), prove that $a_n = 0$ for all n odd. If f is an odd function (i.e., $f(-z) = -f(z)$), prove that $a_n = 0$ for all n even.

Proof. Define $g(z) = f(-z)$. Then by the Chain Rule, we have $g'(z) = -f'(-z)$ and $g''(z) = f''(-z)$; proceeding inductively, we have $g^{(k)}(z) = (-1)^k f^{(k)}(z)$.

Thus, for any $k \geq 0$, we have $g^{(k)}(0) = (-1)^k f^{(k)}(0)$.

Since g is also analytic, we may write $g(z) = \sum b_n z^n$. By the Theorem on page 144, we have $a_n = \frac{f^{(n)}(0)}{n!}$ $\frac{n}{n!}^{(0)}$ and $b_n = \frac{g^{(n)}(0)}{n!}$ $\frac{d}{n!}$. It follows that $b_n = (-1)^n a_n$ for all $n \ge 0$.

Case 1: f is even. Then $g = f$, and hence, by the uniqueness of power series expansions (via the first Corollary on page 146), we have $b_n = a_n$ for all n.

On the other hand, by the above, for any n odd, we have $b_n = (-1)^n a_n = -a_n$. That is, $a_n = -a_n$, and hence $a_n=0$, as desired.

Case 2: f is odd. Then $g = -f$, and hence, by the uniqueness of power series expansions (via the first Corollary on page 146), we have $b_n = -a_n$ for all n.

On the other hand, by the above, for any n even, we have $b_n = (-1)^n a_n = a_n$. That is, $a_n = -a_n$, and hence $a_n=0$, as desired. QED