
Math 345, Fall 2024

Solutions to Homework #15

Problem 1. V.3, #7. Consider the series

∞∑
k=0

(
2 + (−1)k

)k
zk.

(a) Use the Cauchy-Hadamard formula to find the radius of convergence of this series.
(b) What happens when the ratio test is applied?
(c) Explicitly evaluate the sum of the series.

Solution/Proof. Let ak =
(
2 + (−1)k

)k
. That is, ak =

{
1 if k is odd,

3k if k is even.

Part (a): We compute

lim sup
k→∞

k
√

|ak| = lim
n→∞

sup
({

k
√
1
∣∣k ≥ n odd

}
∪
{ k
√
3k
∣∣k ≥ n even

})
= lim

n→∞
max{1, 3} = lim

n→∞
3 = 3.

Hence, by Cauchy-Hadamard, the radius of convergence is 1/3.

Part (b): If we apply the ratio test, we have∣∣∣∣ ak
ak+1

∣∣∣∣ = 1

3k+1
for k odd,

∣∣∣∣ ak
ak+1

∣∣∣∣ = 3k for k even.

Thus, lim
k→∞

∣∣∣∣ ak
ak+1

∣∣∣∣ diverges, since the odd terms go to 0, and the even terms go to ∞. That is, the

ratio test is inconclusive.

Part (c): To sum the series, sum the even and odd terms separately. That is, writing k = 2n for the
even terms, and k = 2n+ 1 for the odd terms, the Geometric Series Test yields
∞∑
k=0

akz
k =

∞∑
n=0

32nz2n +
∞∑
n=0

z2n+1 =
1

1− 9z2
+

z

1− z2

Problem 2. V.4 #1(a,b,d). Find the radius of convergence of the power series for each of the following
functions, expanding about the indicated point.

(a)
1

z − 1
, about z = i (b)

1

cos z
, about z = 0 (d) Log z, about z = 1 + 2i

Solutions. (a): Note that |1 − i| =
√
2. Therefore, f(z) =

1

z − 1
is analytic on D(i,

√
2) but blows

up at the point z = 1 at distance
√
2 from i.

Therefore, by the second Corollary on page 146, the radius of convergence is
√
2

(b): The function cos z has zeros at all odd multiples of π/2 and nowhere else.

Therefore, f(z) =
1

cos z
is analytic on D(0, π/2) but blows up at the points z = ±π/2 at distance π/2

from 0.
Therefore, by the second Corollary on page 146, the radius of convergence is π/2

(c): The function Log z fails to be analytic at z = 0, which is at distance |1 + 2i| =
√
5 from 1 + 2i.



At the same time, Log z is analytic on a region (e.g., the slit plane) containing the disk D(1+ 2i,
√
5).

Therefore, by the second Corollary on page 146, the radius of convergence is
√
5

Problem 3. V.4 #2. Prove that the radius of convergence of the power series expansion of
z2 − 1

z3 − 1
about z = 2 is R =

√
7.

Proof. Let f(z) =
z2 − 1

z3 − 1
, and then, cancelling a factor of z−1 from both numerator and denominator,

let g(z) =
z + 1

z2 + z + 1
.

Note that g is analytic on a larger domain than f is — g is defined at 1, in particular — but there
cannot an analytic extension of either function that is analytic at either of the roots of z2 + z + 1,
since the value of |g(z)| blows up to ∞ at those points.

The roots of z2 + z + 1 are z =
−1±

√
1− 4

2
= −1

2
±

√
3

2
i, by the quadratic formula. Both of these

points are at distance

√(
2 +

1

2

)2

+

(√
3

2

)2

=

√
25

4
+

3

4
=

√
7 from z = 2.

Thus, g is analytic on D(2,
√
7), but no extension of g is analytic on any larger open disk.

Therefore, by the second Corollary on page 146, the radius of convergence is
√
7. QED

Problem 4. V.4 #3. Find the power series expansion of Log z about the point z = i − 2. Working
directly from this series, prove that its radius of convergence is R =

√
5. Explain why this does not

contradict the discontinuity of Log z at z = −2.

Solution/Proof. Let f(z) = Log z. Then f ′(z) = z−1, so that f ′′(z) = −z−2 and f ′′′(z) = 2z−3, and
in general, f (k)(z) = (−1)k−1(k − 1)!z−k.

Thus, f(i− 2) = Log(i− 2), but for k ≥ 1, we have f (k)(i− 2) = (−1)k−1(k − 1)!(i− 2)k.

Therefore, by the Taylor series formula (4.1), (4.2) on page 144, we have

f(z) = Log(i− 2) +
∑
k≥1

ak(z − (i− 2))k, where ak =
(−1)k−1(k − 1)!(i− 2)−k

k!
=

(−1)k

k(i− 2)k
.

Applying the ratio test (from page 141), the radius of convergence is

R = lim
k→∞

∣∣∣∣ ak
ak+1

∣∣∣∣ = lim
k→∞

k + 1

k
· |i− 2| = |i− 2| =

√
5, as claimed.

This does not contract the discontinuity of Log z at −2 (and along the slit (−∞, 0]), because there is
a different analytic branch of log z — say, with arg z ∈ (0, 2π), which has branch cut along [0,∞) —
for which the disk D(i− 2,

√
5) is contained in the domain.

Problem 5. V.4, #12. Let f(z) be an analytic function with power series expansion
∑

anz
n.

If f is an even function (i.e., f(−z) = f(z)), prove that an = 0 for all n odd.
If f is an odd function (i.e., f(−z) = −f(z)), prove that an = 0 for all n even.

Proof. Define g(z) = f(−z). Then by the Chain Rule, we have g′(z) = −f ′(−z) and g′′(z) = f ′′(−z);
proceeding inductively, we have g(k)(z) = (−1)kf (k)(z).

Thus, for any k ≥ 0, we have g(k)(0) = (−1)kf (k)(0).
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Since g is also analytic, we may write g(z) =
∑

bnz
n. By the Theorem on page 144, we have

an =
f (n)(0)

n!
and bn =

g(n)(0)

n!
. It follows that bn = (−1)nan for all n ≥ 0.

Case 1: f is even. Then g = f , and hence, by the uniqueness of power series expansions (via the
first Corollary on page 146), we have bn = an for all n.

On the other hand, by the above, for any n odd, we have bn = (−1)nan = −an. That is, an = −an,
and hence an=0, as desired.

Case 2: f is odd. Then g = −f , and hence, by the uniqueness of power series expansions (via the
first Corollary on page 146), we have bn = −an for all n.

On the other hand, by the above, for any n even, we have bn = (−1)nan = an. That is, an = −an,
and hence an=0, as desired. QED
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