Math 345, Fall 2024

Solutions to Homework $#14$

Problem 1. V.2, #7. Let $\{a_n\}_{n\geq 1}$ be a bounded sequence of complex numbers. For any $\varepsilon > 0$, prove that the series $\sum_{n=1}^{\infty}$ $n=1$ $a_n n^{-z}$ converges uniformly on the (closed) half-plane Re $z \geq 1 + \varepsilon$.

Proof. By hypothesis, there is some $M > 0$ such that $|a_n| \leq M$ for all $n \geq 0$. Given $\varepsilon > 0$:

Claim. For each $n \ge 1$ and each z with $\text{Re } z \ge 1 + \varepsilon$, we have $|a_n n^{-z}| \le M/n^{1+\varepsilon}$.

Proof of Claim. Given $n \ge 1$ and $z = x + iy$ with $x \ge 1 + \varepsilon$, we have

$$
|a_n n^{-z}| = |a_n e^{-z \log n}| = |a_n||e^{-x \log n}||e^{-iy \log n}| = |a_n||n^{-x}| \le Mn^{-x} \le \frac{M}{n^{1+\varepsilon}}.
$$
 QED Claim

In addition, we have \sum $n\geq 1$ M $\frac{M}{n^{1+\varepsilon}} = M \sum_{\geq 1}$ $n\geq 1$ 1 $\frac{1}{n^{1+\epsilon}}$ converges by the *p*-test (from Math 121). Thus, by the Weierstrass M-test, the original series converges uniformly on $\{z \in \mathbb{C} : \text{Re } z \geq 1 + \varepsilon\}.$ QED

Problem 2. V.2 $\#8$. Prove that \sum $k\succeq1$ z^k $\frac{z}{k^2}$ converges uniformly on the disk $|z| < 1$.

Proof. Define $M_k = \frac{1}{k^2}$ $\frac{1}{k^2}$ for each $k \geq 1$. Then for all $z \in D(0,1)$ and all $k \geq 1$, we have

$$
\left|\frac{z^k}{k^2}\right| = \frac{|z|^k}{k^2} \le \frac{1^k}{k^2} = M_k.
$$

We also know that $\sum M_k = \sum \frac{1}{k^2}$ $\frac{1}{k^2}$ converges by the *p*-test. Therefore, the original series converges uniformly on $D(0, 1)$ by the M-test. QED

Problem 3. V.3, $\#1(a,b,d)$. Find the radius of convergence of each of the following power series. (a) $\sum_{k=1}^{\infty} 2^k z^k$ $_{k=0}$ (b) $\sum_{n=1}^{\infty}$ $_{k=0}$ k $\frac{\kappa}{6^k} z^k$ (d) $\sum_{n=1}^{\infty}$ $_{k=0}$ $3^k z^k$ 4^k+5^k

Solutions. (a), Method 1: By definition, the radius of convergence is sup \mathcal{R} , where $\mathcal{R} = \{r \ge 0 \, | \, \{ |2^k| r^k \}_k \text{ is bounded} \}.$

The sequence here is $\{(2r)^k\}_k$, which, being a geometric sequence, is bounded if and only if its common ratio 2r has absolute value $\lt 1$. That is, $\mathcal{R} = \{r \geq 0 | 2r \lt 1\} = [0, 1/2)$, which has supremum $R = 1/2$. That is, the radius of convergence is $\frac{1}{2}$

(a), Method 2: Applying the version of the Ratio Test on page 141, the radius of convergence is lim k→∞ $\begin{array}{c} \hline \end{array}$ 2^k 2^{k+1} $\begin{array}{c} \hline \end{array}$ $=\lim_{k\to\infty}$ 1 $\frac{1}{2} = \left| \frac{1}{2} \right|$ 2

(b), Method 1: By definition, the radius of convergence is sup \mathcal{R} , where $\mathcal{R} = \left\{ r \geq 0 \right\}$ $\left\{ \left\vert \rule{0pt}{10pt}\right. \right.$ k 6^k $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ r^k k is bounded. The sequence here is ${k(r/6)^k}_k$. We claim that $\mathcal{R} = [0, 6)$.

We prove the forward inclusion of this claim by contrapositive: suppose $r \geq 6$. Then $k(r/6)^k \geq k$, so that ${k(r/6)^k}_k$ is unbounded, and hence $r \notin \mathcal{R}$, as desired.

To prove the reverse inclusion of the claim, consider arbitrary $r \in [0, 6)$.

Then writing $a = \log(6/r) > 0$, we have $(6/r)^k = e^{ak}$, and so $\lim_{k \to \infty}$ k $\frac{n}{(6/r)^k} = \lim_{t \to \infty}$ t $\frac{c}{e^{at}} = \lim_{t \to \infty}$ $\frac{1}{ae^{at}} = 0,$

by L'Hôpital's rule, since the second limit is of the indeterminate form ∞/∞ . Therefore, since convergent sequences are bounded (see the Theorem on page 34, for example), it follows that $r \in \mathcal{R}$, proving our claim. Hence, $\sup \mathcal{R} = 6$. So the radius of convergence is 6

(b), Method 2: Applying the version of the Ratio Test on page 141, the radius of convergence is lim k→∞ k 6^k $k+1$ 6^{k+1} $=\lim_{k\to\infty}$ k $\frac{k}{k+1} \cdot \frac{6^{k+1}}{6^k}$ $\frac{1}{6^k} = \lim_{k \to \infty}$ 1 $1+\frac{1}{k}$ $\cdot 6 = | 6$

(d), Method 1: By definition, the radius of convergence is sup \mathcal{R} , where $\mathcal{R} = \left\{ r \geq 0 \middle|$ $\left\{ \left\vert \rule{0pt}{10pt}\right. \right.$ 3^k 4^k+5^k $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ r^k k is bounded. The sequence here is $\left\{ \frac{(3r/5)^k}{(4/5)^k + 1} \right\}_k$. We claim that $\mathcal{R} = [0, 5/3].$

We prove the forward inclusion of this claim by contrapositive: suppose $r > 5/3$, and hence that $3r/5 > 1$. Then $\frac{(3r/5)^k}{(4/5)^k + 1} \ge \frac{1}{2}$ 2 $\sqrt{3r}$ 5 $\bigg\}^k$ is unbounded, so that $r \notin \mathcal{R}$, as deesired. To prove the reverse inclusion of the claim, consider arbitrary $r \in [0, 5/3)$. Then $3r/5 < 1$. So $(3r/5)^k$ $\frac{(3r/5)^k}{(4/5)^k+1} \le \left(\frac{3r}{5}\right)$ 5 $\left\langle k\right\rangle^k < 1$ is bounded. Therefore, $r \in \mathcal{R}$, proving our claim.

Hence, sup $\mathcal{R} = 5/3$. So the radius of convergence is $\frac{5}{3}$

 \mathbf{I}

(d), Method 2: Applying the version of the Ratio Test on page 141, the radius of convergence is

$$
\lim_{k \to \infty} \left| \frac{\frac{3^k}{4^k + 5^k}}{\frac{3^{k+1}}{4^{k+1} + 5^{k+1}}} \right| = \lim_{k \to \infty} \frac{3^k}{3^{k+1}} \cdot \frac{4^{k+1} + 5^{k+1}}{4^k + 5^k} = \lim_{k \to \infty} \frac{1}{3} \cdot \frac{4 \cdot (\frac{4}{5})^k + 5}{(\frac{4}{5})^k + 1} = \frac{1}{3} \cdot \frac{0 + 5}{0 + 1} = \frac{5}{3}
$$

Problem 4. V.3, #5(a). What function is represented by the power series $\sum_{k=1}^{\infty} k z^k$? $_{k=1}$

Solution. Recall that $(1-z)^{-1} = \frac{1}{1-z}$ $\frac{1}{1-z} = \sum_{k=0}^{\infty}$ $_{k=0}$ z^k ; call this function $g(z)$. Then differentiating the power series, we have

$$
g'(z) = \sum_{k=0}^{\infty} kz^{k-1} = \sum_{k=1}^{\infty} kz^{k-1},
$$

where the index change at the end was simply by the fact that the $k = 0$ term is already 0. On the other hand, the Chain Rule yields $g'(z) = -(1-z)^{-2} \cdot (-1) = \frac{1}{(1-z)^2}$.

Thus, the original power series is $\sum_{n=1}^{\infty}$ $k=1$ $kz^k = zg'(z) = \boxed{\frac{z}{(1-z)^2}}$

Problem 5. V.3, #6. Show that a power series $\sum a_k z^k$, its differentiated series $\sum k a_k z^{k-1}$, and its integrated series $\sum \frac{a_k}{k+1} z^{k+1}$ all have the same radius of convergence.

Proof. Let $\mathcal{R}_1 = \{r \in [0, \infty) | \{ |a_k| r^k \}_{k \geq 0} \text{ is bounded} \}$, and let $\mathcal{R}_2 = \{r \in [0, \infty) | \{|ka_k| r^{k-1}\}_{k \geq 1}$ is bounded}. We will show that $\sup \mathcal{R}_1 = \sup \mathcal{R}_2$.

First, given $r \in \mathcal{R}_2$, let M_r be a bound for the sequence $\{|ka_k|r^{k-1}\}_{k\geq 1}$. Then for each $k \geq 1$, we have

$$
|a_k|r^k = r(|a_k|r^{k-1}) \le r(|ka_k|r^{k-1}) \le rM_r.
$$

Thus, for all $k \geq 0$, we have $|a_k|r^k \leq \max\{|a_0|, rM_r\}$. Hence, $\{|a_k|r^k\}_{k\geq 0}$ is bounded; that is, $r \in \mathcal{R}_1$. We have shown that $\mathcal{R}_2 \subseteq \mathcal{R}_1$. Therefore, any upper bound for \mathcal{R}_1 is also an upper bound for \mathcal{R}_2 . Thus, $\sup \mathcal{R}_1 \geq \sup \mathcal{R}_2$.

Second, given $r \in \mathcal{R}_1$, we will now show that $[0, r) \subseteq \mathcal{R}_2$. This is trivial if $r = 0$, so we assume $r > 0$. Let N_r be a bound for the sequence $\{|a_k|r^k\}_{k\geq 0}$. Given $s \in [0, r)$, we have $\lim_{k\to\infty} k(s/r)^{k-1} = 0$, and hence there is some $B \geq 0$ such that $k(s/r)^k \leq B$ for all $k \geq 0$. Thus, for all $k \geq 1$, we have

$$
|ka_k|s^{k-1} = \left[k\left(\frac{s}{r}\right)^{k-1}\right] \left(|a_k|r^k\right) \left(\frac{1}{r}\right) \le \frac{BN_r}{r}.
$$

Therefore, the sequence $\{|ka_k|s^{k-1}\}_{k\geq 1}$ is bounded (by BN_r/r). That is, $s \in \mathcal{R}_2$, as desired.

Given any upper bound C for \mathcal{R}_2 , then for every $r \in \mathcal{R}_1$, we have $[0, r) \subseteq \mathcal{R}_2$, and hence $C \geq r$. Thus, C is also an upper bound for \mathcal{R}_1 . Hence, $\sup \mathcal{R}_1 \leq \sup \mathcal{R}_2$. By our previous inequality, $\sup \mathcal{R}_1 = \sup \mathcal{R}_2$.

Since sup \mathcal{R}_1 is the radius of convergence of $\sum a_k z^k$ and sup \mathcal{R}_2 is the radius of convergence of $\sum k a_k z^{k-1}$, it follows that the two series have the same radius of convergence.

Now consider the series $\sum \frac{a_k}{k+1} z^{k+1}$ in place of $\sum a_k z^k$. By what we have just proven, the derivative of the series $\sum \frac{a_k}{k+1} z^{k+1}$ has the same radius of convergence as $\sum \frac{a_k}{k+1} z^{k+1}$ itself. That is, $\sum a_k z^k$ and $\sum \frac{a_k}{k+1} z^{k+1}$ have the same radius of convergence. QED

Side note #1: We cannot use the ratio test, because there are some series where $\lim_{k\to\infty} |a_k/a_{k+1}|$ diverges. (See, for example, Exercise V.3 $\#7$, which is on HW $\#15$).

Side note $\#2$: An alternate proof strategy would be to use the Cauchy-Hadamard formula, which reduces to proving that

$$
\limsup_{k \to \infty} \sqrt[k]{|a_k|} = \limsup_{k \to \infty} \sqrt[k-1]{|ka_k|}.
$$

(This can be made slightly easier by first multiplying the differentiated series by z — which does not change the region of convergence, and hence does not change the radius of convergence — so that we have to show $\limsup \sqrt[k]{|a_k|} = \limsup \sqrt[k]{|ka_k|}$. But that's just a slight improvement.) $k\rightarrow\infty$ $k\rightarrow\infty$

Unfortunately, we haven't proven any rules for manipulating limsup's. (And while there are some rules for manipulating limsups, they are not as easy as the limit laws. For example, in general, $\limsup(a_k + b_k)$ does not equal $\limsup a_k + \limsup b_k$. So if you proceed in this fashion, you have to work from the definition of lim sup. And that ends up taking at least as much time and effort as the proof I gave above.