
Math 345, Fall 2024

Solutions to Homework #14

Problem 1. V.2, #7. Let {an}n≥1 be a bounded sequence of complex numbers. For any ε > 0, prove

that the series

∞∑
n=1

ann
−z converges uniformly on the (closed) half-plane Re z ≥ 1 + ε.

Proof. By hypothesis, there is some M > 0 such that |an| ≤ M for all n ≥ 0. Given ε > 0:

Claim. For each n ≥ 1 and each z with Re z ≥ 1 + ε, we have |ann−z| ≤ M/n1+ε.

Proof of Claim. Given n ≥ 1 and z = x+ iy with x ≥ 1 + ε, we have∣∣ann−z
∣∣ = ∣∣ane−z Logn

∣∣ = |an||e−x logn||e−iy logn| = |an||n−x| ≤ Mn−x ≤ M

n1+ε
. QED Claim

In addition, we have
∑
n≥1

M

n1+ε
= M

∑
n≥1

1

n1+ε
converges by the p-test (from Math 121). Thus, by the

Weierstrass M -test, the original series converges uniformly on {z ∈ C : Re z ≥ 1 + ε}. QED

Problem 2. V.2 #8. Prove that
∑
k≥1

zk

k2
converges uniformly on the disk |z| < 1.

Proof. Define Mk =
1

k2
for each k ≥ 1. Then for all z ∈ D(0, 1) and all k ≥ 1, we have∣∣∣∣zkk2

∣∣∣∣ = |z|k

k2
≤ 1k

k2
= Mk.

We also know that
∑

Mk =
∑ 1

k2
converges by the p-test. Therefore, the original series converges

uniformly on D(0, 1) by the M -test. QED

Problem 3. V.3, #1(a,b,d). Find the radius of convergence of each of the following power series.

(a)

∞∑
k=0

2kzk (b)

∞∑
k=0

k

6k
zk (d)

∞∑
k=0

3kzk

4k + 5k

Solutions. (a), Method 1: By definition, the radius of convergence is supR, where
R = {r ≥ 0 | {|2k|rk}k is bounded}.
The sequence here is {(2r)k}k, which, being a geometric sequence, is bounded if and only if its common
ratio 2r has absolute value < 1. That is, R = {r ≥ 0 | 2r < 1} = [0, 1/2), which has supremum

R = 1/2. That is, the radius of convergence is
1

2

(a), Method 2: Applying the version of the Ratio Test on page 141, the radius of convergence is

lim
k→∞

∣∣∣∣ 2k

2k+1

∣∣∣∣ = lim
k→∞

1

2
=

1

2

(b), Method 1: By definition, the radius of convergence is supR, where

R =

{
r ≥ 0

∣∣∣∣ {∣∣∣∣ k6k
∣∣∣∣rk}

k

is bounded

}
. The sequence here is {k(r/6)k}k. We claim that R = [0, 6).



We prove the forward inclusion of this claim by contrapositive: suppose r ≥ 6. Then k(r/6)k ≥ k, so
that {k(r/6)k}k is unbounded, and hence r ̸∈ R, as desired.
To prove the reverse inclusion of the claim, consider arbitrary r ∈ [0, 6).

Then writing a = log(6/r) > 0, we have (6/r)k = eak, and so lim
k→∞

k

(6/r)k
= lim

t→∞

t

eat
= lim

t→∞

1

aeat
= 0,

by L’Hôpital’s rule, since the second limit is of the indeterminate form ∞/∞. Therefore, since conver-
gent sequences are bounded (see the Theorem on page 34, for example), it follows that r ∈ R, proving
our claim. Hence, supR = 6. So the radius of convergence is 6

(b), Method 2: Applying the version of the Ratio Test on page 141, the radius of convergence is

lim
k→∞

∣∣∣∣∣∣∣
k

6k

k + 1

6k+1

∣∣∣∣∣∣∣ = lim
k→∞

k

k + 1
· 6

k+1

6k
= lim

k→∞

1

1 + 1
k

· 6 = 6

(d), Method 1: By definition, the radius of convergence is supR, where

R =

{
r ≥ 0

∣∣∣∣ {∣∣∣∣ 3k

4k + 5k

∣∣∣∣rk}
k

is bounded

}
. The sequence here is

{
(3r/5)k

(4/5)k + 1

}
k

. We claim that

R = [0, 5/3].

We prove the forward inclusion of this claim by contrapositive: suppose r > 5/3, and hence that

3r/5 > 1. Then
(3r/5)k

(4/5)k + 1
≥ 1

2

(
3r

5

)k

is unbounded, so that r ̸∈ R, as deesired.

To prove the reverse inclusion of the claim, consider arbitrary r ∈ [0, 5/3). Then 3r/5 < 1. So

(3r/5)k

(4/5)k + 1
≤

(
3r

5

)k

< 1 is bounded. Therefore, r ∈ R, proving our claim.

Hence, supR = 5/3. So the radius of convergence is
5

3

(d), Method 2: Applying the version of the Ratio Test on page 141, the radius of convergence is

lim
k→∞

∣∣∣∣∣∣∣∣
3k

4k + 5k

3k+1

4k+1 + 5k+1

∣∣∣∣∣∣∣∣ = lim
k→∞

3k

3k+1
· 4

k+1 + 5k+1

4k + 5k
= lim

k→∞

1

3
·
4 · (45)

k + 5

(45)
k + 1

=
1

3
· 0 + 5

0 + 1
=

5

3

Problem 4. V.3, #5(a). What function is represented by the power series

∞∑
k=1

kzk?

Solution. Recall that (1− z)−1 =
1

1− z
=

∞∑
k=0

zk; call this function g(z).

Then differentiating the power series, we have

g′(z) =

∞∑
k=0

kzk−1 =

∞∑
k=1

kzk−1,

where the index change at the end was simply by the fact that the k = 0 term is already 0. On the

other hand, the Chain Rule yields g′(z) = −(1− z)−2 · (−1) =
1

(1− z)2
.

2



Thus, the original power series is
∞∑
k=1

kzk = zg′(z) =
z

(1− z)2

Problem 5. V.3, #6. Show that a power series
∑

akz
k, its differentiated series

∑
kakz

k−1, and its

integrated series
∑ ak

k + 1
zk+1 all have the same radius of convergence.

Proof. Let R1 = {r ∈ [0,∞)|{|ak|rk}k≥0 is bounded}, and let
R2 = {r ∈ [0,∞)|{|kak|rk−1}k≥1 is bounded}. We will show that supR1 = supR2.
First, given r ∈ R2, let Mr be a bound for the sequence {|kak|rk−1}k≥1. Then for each k ≥ 1, we have

|ak|rk = r
(
|ak|rk−1

)
≤ r

(
|kak|rk−1

)
≤ rMr.

Thus, for all k ≥ 0, we have |ak|rk ≤ max{|a0|, rMr}. Hence, {|ak|rk}k≥0 is bounded; that is, r ∈ R1.
We have shown that R2 ⊆ R1. Therefore, any upper bound for R1 is also an upper bound for R2.
Thus, supR1 ≥ supR2.
Second, given r ∈ R1, we will now show that [0, r) ⊆ R2. This is trivial if r = 0, so we assume r > 0.
Let Nr be a bound for the sequence {|ak|rk}k≥0. Given s ∈ [0, r), we have lim

k→∞
k(s/r)k−1 = 0, and

hence there is some B ≥ 0 such that k(s/r)k ≤ B for all k ≥ 0. Thus, for all k ≥ 1, we have

|kak|sk−1 =
[
k
(s
r

)k−1](
|ak|rk

)(1
r

)
≤ BNr

r
.

Therefore, the sequence {|kak|sk−1}k≥1 is bounded (by BNr/r). That is, s ∈ R2, as desired.
Given any upper bound C for R2, then for every r ∈ R1, we have [0, r) ⊆ R2, and hence C ≥ r.
Thus, C is also an upper bound for R1. Hence, supR1 ≤ supR2. By our previous inequality,
supR1 = supR2.
Since supR1 is the radius of convergence of

∑
akz

k and supR2 is the radius of convergence of∑
kakz

k−1, it follows that the two series have the same radius of convergence.

Now consider the series
∑ ak

k + 1
zk+1 in place of

∑
akz

k. By what we have just proven, the derivative

of the series
∑ ak

k + 1
zk+1 has the same radius of convergence as

∑ ak
k + 1

zk+1 itself. That is,
∑

akz
k

and
∑ ak

k + 1
zk+1 have the same radius of convergence. QED

Side note #1: We cannot use the ratio test, because there are some series where limk→∞ |ak/ak+1|
diverges. (See, for example, Exercise V.3 #7, which is on HW #15).

Side note #2: An alternate proof strategy would be to use the Cauchy-Hadamard formula, which
reduces to proving that

lim sup
k→∞

k
√

|ak| = lim sup
k→∞

k−1
√
|kak|.

(This can be made slightly easier by first multiplying the differentiated series by z — which does not
change the region of convergence, and hence does not change the radius of convergence — so that we
have to show lim sup

k→∞

k
√

|ak| = lim sup
k→∞

k
√
|kak|. But that’s just a slight improvement.)

Unfortunately, we haven’t proven any rules for manipulating limsup’s. (And while there are some
rules for manipulating limsups, they are not as easy as the limit laws. For example, in general,
lim sup(ak + bk) does not equal lim sup ak + lim sup bk.) So if you proceed in this fashion, you have to
work from the definition of lim sup. And that ends up taking at least as much time and effort as the
proof I gave above.

3


