Math 345, Fall 2024
Solutions to Homework #13

Problem 1. IV.5, #2. Let f be an entire function. Suppose that there is a disk D = D(a,r) — that
is, the open disk centered at some point a € C of some (positive) radius r > 0 — such that f does not
attain any values in D. (That is, for all z € C, we have f(z) ¢ D.) Prove that f is constant.

Proof. Let h(z) = 1/(z — a), which is an analytic function on C ~\ {a}. Since f(z) # a for all z € C,

1
we have h(f(z)) is analytic at all z € C; that is, h(f(2)) = ) —a is entire.
z)—a
Let M =1/r € (0,00). Then for all z € C, we have f(z) € D(a,r), so that |f(z) — a| > r. Therefore,

h(f(z2))| = ———— < M. That is, ho f is bounded by M.
MG = =

Since h o f is a bounded entire function, it is constant by Liouville’s Theorem. Call this constant
¢ € C. Then for all z € C, we have f(z) —a = 1/¢, and hence f(z) = a+ 1/c. That is, f(z) is the
constant function a + 1/c. QED

Problem 2. IV.6, #2. Fix real numbers a < b, and let & : [a,b] — C be continuous. The Fourier
transform of h is the function H : C — C given by

b
H(z) :/ h(t)e " dt.
a
Prove that H is an entire function, and that there are some positive constants A, C' > 0 so that
|H(z)| < CeAlv for all z =x 4 iy € C.

Proof. Define f : [a,b] x C — C by f(t,z) = h(t)e ", which is a product of continuous functions
and hence is continuous. In addition, for any fixed ¢ € [a, b], the function z — f(¢, z) is analytic

Therefore, by the Theorem at the top of page 121 (which was also on Video 15), the function H(z) is
analytic on C. That is, H is entire.

Since h is continuous (and so is the absolute value function), the compositionn ¢ — |h(t)| is also
continuous on [a,b]. Because [a,b] is compact, it follows that |h(t)| attains a maximum value B on
[a,b]. [This is the Theorem on page 39, but for the closed interval [a,b], it’s also from Calc 1.] If
B =0, then increase B to 1, so that B > 0.

The segment [a, b] is a path of length L =b —a > 0.
Define | C = BL = B(b—a) > 0| and | A = max{]a, [b[} > 0

Then for any z = x + iy € C, we have
£t 2)] = |h(®)] -
since ty < [t| - |y| and since |t| < A. Thus, with M = BeAl¥l the M L-estimate gives us

e*it(ﬂf+iy)‘ <B- ety < BBA\ZA7

b
|H(z)| = ‘ / h(t)e~ dt‘ < BeAWl. (b — a) = CeAWI QED
a
1 1 1
Problem 3. V.1, #5. It is a fact that the series 1 — 3 + 371t converges to some real number
S. Prove that the series
11 1 1 1 1 1 1
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(which is just a rearrangement of the first series) converges to 35/2.
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Proof. The first series may be written as ; ar, where ap = =3 12 + 1 an and the
o
second series may be written as Z b, where
k=1
1 1 1 1 1 1 1 1
I S ) S T ) S ST

Thus, the 3n-th partial sum of the second series is the n-th partial sum of > by, which is
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Taking the limit n — oo, we have Z b = Z ak + = Z 7= 5 QED
k=1 k=1 j=1

M

[Well, technically that’s only dealing with partial sums of 3n terms. But having shown that 3n-th
partial sums of the second converge to 35/2, we know all of its partial sums converge to 35/2, since
the (3n 4+ 1)-st and (3n + 2)-nd partial sums differ from the 3n-th by 1/(4n+ 1) and by [1/(4n+1) +
1/(4n + 3)], respectively, both of which approach zero as n — co.]

Problem 4. V.2, #10. Let E1,..., E, be subsets of C. Let {fx}7>; be a sequence of functions that
converges uniformly on each of the sets Ej, for j =1,...,n.
Prove that the sequence of functions also converges uniformly on F, where E = F1 U FEs U ---U E,.

Proof. Given € > 0, by the uniform convergence on each Ej, there are integers Ny, Na,..., N, >
1 with the following property: for each j = 1,...,N every k& > Nj;, and every z € FE;, we have
|fu(z) — f(2)| <e.

Let N = max{Ni,...,N,}. Given k > N and z € E, we have z € E; for some j = 1,...,n. Since
k > N > Nj, then we have |fi(z) — f(2)| <e. QED



