Math 345, Fall 2024

Solutions to Homework #13

Problem 1. IV.5, #2. Let f be an entire function. Suppose that there is a disk D = D(a, r) — that is, the open disk centered at some point $a \in \mathbb{C}$ of some (positive) radius r > 0 — such that f does not attain any values in D. (That is, for all $z \in \mathbb{C}$, we have $f(z) \notin D$.) Prove that f is constant.

Proof. Let h(z) = 1/(z - a), which is an analytic function on $\mathbb{C} \setminus \{a\}$. Since $f(z) \neq a$ for all $z \in \mathbb{C}$, we have h(f(z)) is analytic at all $z \in \mathbb{C}$; that is, $h(f(z)) = \frac{1}{f(z) - a}$ is entire. Let $M = 1/r \in (0, \infty)$. Then for all $z \in \mathbb{C}$, we have $f(z) \notin D(a, r)$, so that $|f(z) - a| \geq r$. Therefore, $|h(f(z))| = \frac{1}{|f(z) - a|} \leq M$. That is, $h \circ f$ is bounded by M. Since $h \circ f$ is a bounded entire function, it is constant by Liouville's Theorem. Call this constant $c \in \mathbb{C}$. Then for all $z \in \mathbb{C}$, we have f(z) - a = 1/c, and hence f(z) = a + 1/c. That is, f(z) is the constant function a + 1/c.

Problem 2. IV.6, #2. Fix real numbers a < b, and let $h : [a, b] \to \mathbb{C}$ be continuous. The *Fourier* transform of h is the function $H : \mathbb{C} \to \mathbb{C}$ given by

$$H(z) = \int_{a}^{b} h(t)e^{-itz} \, dt.$$

Prove that H is an entire function, and that there are some positive constants A, C > 0 so that $|H(z)| \leq Ce^{A|y|}$ for all $z = x + iy \in \mathbb{C}$.

Proof. Define $f : [a, b] \times \mathbb{C} \to \mathbb{C}$ by $f(t, z) = h(t)e^{-itz}$, which is a product of continuous functions and hence is continuous. In addition, for any fixed $t \in [a, b]$, the function $z \mapsto f(t, z)$ is analytic

Therefore, by the Theorem at the top of page 121 (which was also on Video 15), the function H(z) is analytic on \mathbb{C} . That is, H is entire.

Since h is continuous (and so is the absolute value function), the composition $t \mapsto |h(t)|$ is also continuous on [a, b]. Because [a, b] is compact, it follows that |h(t)| attains a maximum value B on [a, b]. [This is the Theorem on page 39, but for the closed interval [a, b], it's also from Calc 1.] If B = 0, then increase B to 1, so that B > 0.

The segment [a, b] is a path of length L = b - a > 0. Define C = BL = B(b - a) > 0 and $A = \max\{|a|, |b|\} > 0$

Then for any $z = x + iy \in \mathbb{C}$, we have

$$\left|f(t,z)\right| = \left|h(t)\right| \cdot \left|e^{-it(x+iy)}\right| \le B \cdot e^{ty} \le Be^{A|y|},$$

since $ty \leq |t| \cdot |y|$ and since $|t| \leq A$. Thus, with $M = Be^{A|y|}$, the *ML*-estimate gives us

$$\left|H(z)\right| = \left|\int_{a}^{b} h(t)e^{-itz} dt\right| \le Be^{A|y|} \cdot (b-a) = Ce^{A|y|}$$
QED

Problem 3. V.1, #5. It is a fact that the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ converges to some real number S. Prove that the series

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \cdots$$

(which is just a rearrangement of the first series) converges to 3S/2.

Proof. The first series may be written as $\sum_{k=1}^{\infty} a_k$, where $a_k = \frac{1}{4k-3} - \frac{1}{4k-2} + \frac{1}{4k-1} - \frac{1}{4k}$, and the second series may be written as $\sum_{k=1}^{\infty} b_k$, where

$$b_k = \frac{1}{4k-3} + \frac{1}{4k-1} - \frac{1}{2k} = a_k + \frac{1}{4k-2} + \frac{1}{4k} - \frac{1}{2k} = a_k + \frac{1}{4k-2} - \frac{1}{4k}$$

Thus, the 3*n*-th partial sum of the second series is the *n*-th partial sum of $\sum b_k$, which is

$$\sum_{k=1}^{n} b_k = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} \left(\frac{1}{4k-2} - \frac{1}{4k} \right) = \sum_{k=1}^{n} a_k + \frac{1}{2} \sum_{j=1}^{2n} \frac{(-1)^{j+1}}{j}.$$

Taking the limit $n \to \infty$, we have $\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} a_k + \frac{1}{2} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} = S + \frac{S}{2} = \frac{3S}{2}$. QED

[Well, technically that's only dealing with partial sums of 3n terms. But having shown that 3n-th partial sums of the second converge to 3S/2, we know all of its partial sums converge to 3S/2, since the (3n + 1)-st and (3n + 2)-nd partial sums differ from the 3n-th by 1/(4n + 1) and by [1/(4n + 1) + 1/(4n + 3)], respectively, both of which approach zero as $n \to \infty$.]

Problem 4. V.2, #10. Let E_1, \ldots, E_n be subsets of \mathbb{C} . Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of functions that converges uniformly on each of the sets E_j , for $j = 1, \ldots, n$.

Prove that the sequence of functions also converges uniformly on E, where $E = E_1 \cup E_2 \cup \cdots \cup E_n$.

Proof. Given $\varepsilon > 0$, by the uniform convergence on each E_j , there are integers $N_1, N_2, \ldots, N_n \ge 1$ with the following property: for each $j = 1, \ldots, N$ every $k \ge N_j$, and every $z \in E_j$, we have $|f_k(z) - f(z)| < \varepsilon$.

Let $N = \max\{N_1, \ldots, N_n\}$. Given $k \ge N$ and $z \in E$, we have $z \in E_j$ for some $j = 1, \ldots, n$. Since $k \ge N \ge N_j$, then we have $|f_k(z) - f(z)| < \varepsilon$. QED