Math 345, Fall 2024

Solutions to Homework #12

Problem 1. IV.2, #1(a,b), variant. Let γ be any piecewise-smooth path in the plane from $-\pi i$ to πi . Use primitives to evaluate the following integrals.

(a)
$$\int_{\gamma} z^4 dz$$
 (b) $\int_{\gamma} e^z dz$

Solutions. (a): Define $F(z) = \frac{1}{5}z^5$, so that $F'(z) = z^4$, and hence F is a primitive for z^4 on \mathbb{C} . Thus,

$$\int_{\gamma} z^4 dz = F(\pi i) - F(-\pi i) = \frac{1}{5} (\pi i)^5 - \frac{1}{5} (-\pi i)^5 = \frac{\pi^5 i}{5} (1 - (-1)) = \boxed{\frac{2\pi^5 i}{5}}$$

(a): Define $F(z) = e^z$, so that $F'(z) = e^z$, and hence F is a primitive for e^z on \mathbb{C} . Thus,

$$\int_{\gamma} e^{z} dz = F(\pi i) - F(-\pi i) = e^{\pi i} - e^{-\pi i} = -1 - (-1) = \boxed{0}$$

Problem 2. IV.2, #2. Let γ_1 be any piecewise-smooth path in the right half-plane from $-\pi i$ to πi , and let γ_2 be any piecewise-smooth path in the left half-plane from $-\pi i$ to πi . For each path γ_j , choose an explicit primitive of 1/z (on the right half-plane, and on the left half-plane, respectively). Use this primitive to evaluate $\int_{\gamma_j} \frac{1}{z} dz$ for j = 1, 2.

Solutions. For γ_1 , define $F_1(z) = \text{Log } z$, which is analytic on the usual slit plane $\mathbb{C} \setminus (-\infty, 0]$ with $F'_1(z) = 1/z$. That is, F_1 is a primitive for 1/z on this domain, which contains the right half-plane and hence contains γ_1 . Note that

$$F_1(\pi i) = \log \pi + i \operatorname{Arg}(\pi i) = \log \pi + \frac{\pi i}{2} \quad \text{and} \quad F_1(-\pi i) = \log \pi + i \operatorname{Arg}(-\pi i) = \log \pi - \frac{\pi i}{2}.$$

Thus, $\int_{\gamma_1} \frac{1}{z} dz = F_1(\pi i) - F_1(-\pi i) = \log \pi + \frac{\pi i}{2} - \left(\log \pi - \frac{\pi i}{2}\right) = \overline{\pi i}$

For γ_2 , define $F_2(z)$ to be the branch of $\log z = \log |z| + i \arg(z)$ given by $0 < \arg(z) < 2\pi$. Then F_2 is analytic on the different slit plane $\mathbb{C} \setminus [0, \infty)$ — that is, remove the *positive* real axis — again with $F'_2(z) = 1/z$. That is, F_2 is a primitive for 1/z on this domain, which contains the left half-plane and hence contains γ_2 . Note that

$$F_2(\pi i) = \log \pi + i \arg(\pi i) = \log \pi + \frac{\pi i}{2} \quad \text{and} \quad F_2(-\pi i) = \log \pi + i \arg(-\pi i) = \log \pi + \frac{3\pi i}{2}$$

Thus, $\int_{\gamma_2} \frac{1}{z} dz = F_2(\pi i) - F_2(-\pi i) = \log \pi + \frac{\pi i}{2} - \left(\log \pi + \frac{3\pi i}{2}\right) = \boxed{-\pi i}$

Problem 3. IV.3, #4. Use Cauchy's Theorem to prove the key step of the Fundamental Theorem of Algebra — any polynomial with no roots in \mathbb{C} must be constant — using the following strategy. Let P(z) be a polynomial with coefficients in \mathbb{C} that is not constant. (That is, $P(z) \in \mathbb{C}[z]$ with $\deg(P) \geq 1$.) Write P(z) = P(0) + zQ(z) for an appropriate polynomial Q(z), and consider the integral

$$\oint_{|z|=R} \frac{1}{z} dz = \oint_{|z|=R} \frac{P(z)}{zP(z)} dz = \oint_{|z|=R} \frac{P(0) + zQ(z)}{zP(z)} dz = \oint_{|z|=R} \frac{P(0)}{zP(z)} dz + \oint_{|z|=R} \frac{Q(z)}{P(z)} dz.$$

On the one hand, we can compute the integral on the left side. On the other hand, if P has no roots, you can take the limit as $R \to \infty$ and use the *ML*-estimate and Cauchy's Theorem to bound the integrals on the right side. So if P has no roots, deduce a contradiction.

Proof. Assume P has no zeros in \mathbb{C} . Writing $P(z) = a_0 + a_1 z + \cdots + a_d z^d$ with $d \ge 1$ and $a_d \ne 0$, let $Q(z) = a_1 + a_2 z^2 + \cdots + a_d z^{d-1}$, so that $P(z) = zQ(z) + a_0$. [And of course $a_0 = P(0)$.] For any real number R > 0, recall from direct computation (in the book, and also in class) that

 $\int_{|z|=R} \frac{1}{z} dz = 2\pi i. \text{ Thus, } 2\pi i = \int_{|z|=R} \frac{1}{z} dz = \int_{|z|=R} \frac{P(z)}{zP(z)} dz = \int_{|z|=R} \frac{a_0}{zP(z)} dz + \int_{|z|=R} \frac{Q(z)}{P(z)} dz.$ Consider the first integral on the right side. For |z|=R, we have

$$\frac{|zP(z)|}{R^{d+1}} = \frac{1}{R^{d+1}} |a_d z^{d+1} + a_{d-1} z^d + \dots + a_0 z| \ge |a_d| - \sum_{j=0}^{d-1} |a_j| R^{j-d},$$

which approaches $|a_d| > 0$ as $R \to \infty$. Therefore, for R large enough, we have $|zP(z)| \ge |a_d/2|R^{d+1}$. For such R, then, and for |z| = R, the integrand of the first integral has $\left|\frac{a_0}{zP(z)}\right| \le \frac{|2a_0|}{|a_d|R^{d+1}}$. Meanwhile, its path has length $2\pi R$. Hence, by the ML-estimate, for R large enough, we have $\left|\int_{|z|=R} \frac{a_0}{zP(z)} dz\right| \le \frac{4\pi |a_0|}{|a_d|R^d}$.

The second integral is even simpler. Since P has no zeros, the integrand Q(z)/P(z) is analytic on \mathbb{C} , and hence $\int_{|z|=R} Q(z)/P(z) dz = 0$ by Cauchy's Theorem.

Combining the above computations, we have $2\pi = |2\pi i| = \left| \int_{|z|=R} \frac{a_0}{zP(z)} dz \right| \le \frac{4\pi |a_0|}{|a_d|R^d}$ for all R large enough. Taking the limit as $R \to \infty$, then, we have $2\pi \le 0$, a contradiction. QED

Problem 4. IV.4, #1(a,b). Evaluate these integrals using the Cauchy Integral Formula and/or Cauchy Differentiation Formula and/or Cauchy's Theorem.

(a)
$$\oint_{|z|=2} \frac{z^n}{z-1} dz$$
 for each integer $n \ge 0$ (b) $\oint_{|z|=1} \frac{z^n}{z-2} dz$ for each integer $n \ge 0$

Solutions. (a): The path bounds the disk D(0,2). Let $f(z) = z^n$, which is analytic on this disk (and its boundary). Since z = 1 is inside the disk, the Cauchy Integral Formula for f(1) gives us $\oint_{|z|=2} \frac{z^n}{z-1} dz = 2\pi i f(1) = \boxed{2\pi i}$

(b): The path bounds the disk D(0,1). Let $f(z) = z^n/(z-2)$, which is analytic on this disk (and its boundary), since z = 2 does **not** lie in this disk. So by Cauchy's Theorem, $\oint_{|z|=1} \frac{z^n}{z-2} dz = 0$

Problem 5. IV.4, #1(e,g). Evaluate these integrals using the Cauchy Integral Formula and/or Cauchy Differentiation Formula and/or Cauchy's Theorem.

(e)
$$\oint_{|z|=1} \frac{e^z}{z^m} dz$$
 for each integer $m \in \mathbb{Z}$ (g) $\oint_{|z|=1} \frac{dz}{z^2(z^2-4)e^z}$

Solutions. (e): The path bounds the disk D(0,1). If $m \le 0$, let $f(z) = z^{-m}e^z$, which is analytic on this disk (and its boundary). As in part (b), then, by Cauchy's Theorem, the integal is 0. On the other hand, if m > 1, let $f(z) = e^z$. Since z = 0 is inside the disk, the Cauchy Differentiation

Formula gives us
$$\oint_{|z|=1} \frac{e^z}{z^m} dz = \frac{2\pi i}{(m-1)!} f^{(m-1)}(0) = \frac{2\pi i}{(m-1)!}.$$

Thus, the full answer is $\oint_{|z|=1} \frac{e^z}{z^m} dz = \begin{cases} \frac{2\pi i}{(m-1)!} & \text{if } m \ge 1, \\ 0 & \text{if } m \le 0. \end{cases}$

(g): The path bounds the disk D(0,1). Let $f(z) = e^{-z}/(z^2 - 4)$, which is analytic on this disk (and its boundary), since the only roots $z = \pm 2$ of the denominator lie outside. We compute

.

$$f'(z) = \frac{-e^{-z}(z^2 - 4) - e^{-z}(2z)}{(z^2 - 4)^2}, \text{ and hence } f'(0) = \frac{-(0 - 4) - 0}{(0 - 4)^2} = \frac{1}{4}$$

auchy Differentiation Formula for $f'(0)$.

So by the Cauchy Differentiation Formula for f'(0),

$$\oint_{|z|=1} \frac{dz}{z^2(z^2-4)e^z} = \oint_{|z|=1} \frac{f(z)}{z^2} dz = \frac{2\pi i}{1!} f'(0) = \boxed{\frac{\pi i}{2}}$$