Math 345, Fall 2024

Solutions to Homework #11

Problem 1. III.2, #5. Fix 0 < a < b, and let $D = \{z \in \mathbb{C} : a < |z| < b\} \setminus (-b, -a)$, which is a slit annulus. Given points $A, B \in D$ and two paths γ_0, γ_1 from A to B in D, give an explicit homotopy from γ_0 to γ_1 in D.

Solution/Proof. Note that D can be rewritten as $D = \{z \in \mathbb{C} : a < |z| < b \text{ and } -\pi < \operatorname{Arg} z < \pi\}$, so that both $|\cdot|$ and Arg are continuous functions on D, with $|\cdot|$ taking values in (a, b), and Arg taking values in $(-\pi, \pi)$.

For each of j = 0, 1, write $\gamma_j(t) = r_j(t)e^{\theta_j(t)}$. That is,

 $r_j: [0,1] \to (a,b)$ by $r_j(t) = |\gamma_j(t)|$, and $\theta_j: [0,1] \to (-\pi,\pi)$ by $\theta_j(t) = \operatorname{Arg}(\gamma_j(t))$,

both of which are continuous functions on [0, 1], since each is a composition of continuous functions.

Define $R: [0,1] \times [0,1] \to (a,b)$ and $S: [0,1] \times [0,1] \to (-\pi,\pi)$ by

 $R(s,t) = (1-s)r_0(t) + sr_1(t)$ and $S(s,t) = (1-s)\theta_0(t) + s\theta_1(t)$,

both of which are continuous functions, since each r_j and θ_j is continuous. Moreover, the image of R really lies in (a, b), since $r_j(t) \in (a, b)$ for all $t \in [0, 1]$ for each of j = 0, 1. Similarly, the image of S really lies in $(-\pi, \pi)$.

Thus, we may define $T: [0,1] \times [0,1] \to D$ by $T(s,t) = R(s,t)e^{iS(s,t)}$

The image of T really lies in D, since the images of R and S lie in (a, b) and $(-\pi, \pi)$, respectively. In addition, T is continuous since R and S are both continuous.

It remains to check that T has the correct boundary values. For any $s \in [0, 1]$, we have

 $R(s,0) = (1-s)|\gamma_0(0)| + s|\gamma_1(0)| = (1-s)|A| + s|A| = |A|,$

and similarly $S(s, 0) = \operatorname{Arg}(A)$, R(s, 1) = |B|, and $S(s, 1) = \operatorname{Arg}(B)$. Thus, $T(s, 0) = |A|e^{i\operatorname{Arg}(A)} = A$ and $T(s, 1) = |B|e^{i\operatorname{Arg}(B)} = B$ for all $s \in [0, 1]$.

Finally, for any $t \in [0, 1]$, we have $R(0, t) = r_0(t)$ and $S(0, t) = \theta_0(t)$, so that $T(0, t) = r_0(t)e^{\theta_0(t)} = \gamma_0(t)$. Similarly, $T(1, t) = \gamma_1(t)$.

Thus, T is a homotopy fitting the required conditions.

Problem 2. IV.1, #1(a,b,c). Let γ be the boundary of the triangle $\{0 < x < 1, 0 < y < 1 - x\}$, oriented counterclockwise. Parametrize γ and use your parametrization to compute each of the following integrals:

(a)
$$\int_{\gamma} \operatorname{Re}(z) dz$$
 (b) $\int_{\gamma} \operatorname{Im}(z) dz$ (c) $\int_{\gamma} z dz$

Solutions. Define $\gamma_1, \gamma_2, \gamma_3 : [0, 1] \to \mathbb{C}$ by

$$\gamma_{1}(t) = t, \qquad \gamma_{2}(t) = (1-t) + it, \qquad \gamma_{3}(t) = i(1-t),$$

so that $\gamma = \gamma_1 + \gamma_2 + \gamma_3$. Writing each γ_j as x(t) + iy(t), with dz = dx + idy, this means for γ_1 : x = t, y = 0, dz = dt

for
$$\gamma_2$$
: $x = 1 - t, \ y = t, \ dz = (-1 + i)dt$
for γ_3 : $x = 0, \ y = 1 - t, \ dz = -idt$

Recalling dz = dx + idy, we can now compute the integrals:

$$\begin{aligned} \text{(a):} & \int_{\gamma} \operatorname{Re}(z) \, dz = \int_{\gamma_1} x \, dz + \int_{\gamma_2} x \, dz + \int_{\gamma_3} x \, dz \\ &= \int_0^1 t \, dt + \int_0^1 (1-t)(-1+i) \, dt + \int_0^1 0(-i) \, dt = \left[\frac{t^2}{2}\right]_0^1 + (-1+i) \left[t - \frac{t^2}{2}\right]_0^1 + 0 \\ &= \left(\frac{1}{2} - 0\right) + (-1+i) \left(1 - \frac{1}{2} - 0\right) = \left[\frac{i}{2}\right] \\ \hline \text{(b):} & \int_{\gamma} \operatorname{Im}(z) \, dz = \int_{\gamma_1} y \, dz + \int_{\gamma_2} y \, dz + \int_{\gamma_3} y \, dz \\ &= \int_0^1 0 \, dt + \int_0^1 t(-1+i) \, dt + \int_0^1 (1-t)(-i) \, dt = 0 + (-1+i) \left[\frac{t^2}{2}\right]_0^1 + (-i) \left[t - \frac{t^2}{2}\right]_0^1 \right] \\ &= 0 + (-1+i) \left(\frac{1}{2} - 0\right) + (-i) \left(1 - \frac{1}{2} - 0\right) = \left[-\frac{1}{2}\right] \\ \hline \hline \text{(c):} & \int_{\gamma} z \, dz = \int_{\gamma} \operatorname{Re}(z) \, dz + i \int_{\gamma} \operatorname{Im}(z) \, dz = \frac{i}{2} + i \left(-\frac{i}{2}\right) = \left[0\right] \end{aligned}$$

Problem 3. IV.1, #3, variant. Fix R > 0. Let γ be the circle $\{|z| = R\}$, oriented counterclockwise. Parametrize γ and use your parametrization to compute each of the following integrals for each integer $m = 0, \pm 1, \pm 2, \ldots$

(a)
$$\int_{\gamma} z^m dz$$
 (b) $\int_{\gamma} |z|^m dz$ (c) $\int_{\gamma} \overline{z}^m dz$ (d) $\int_{\gamma} |z^m| |dz|$

Solutions. Define $\gamma : [0, 2\pi] \to \mathbb{C}$ by $\gamma(t) = Re^{it} = R\cos t + iR\sin t$:

Then since $x = R \cos t$ and $y = R \sin t$, we have $dx = -R \sin t \, dt$ and $dy = R \cos t \, dt$, so $dz = dx + i \, dy = R(-\sin t + i \cos t) \, dt = iR(\cos t + i \sin t) \, dt = iz \, dt$

So we can now compute the integrals:

(a):
$$\int_{\gamma} z^m dz = \int_0^{2\pi} z^m (iz) dt = iR^{m+1} \int_0^{2\pi} e^{i(m+1)t} dt = iR^{m+1} \int_0^{2\pi} \cos\left((m+1)t\right) + i\sin\left((m+1)t\right) dt$$

leading to two cases. If $m \neq -1$, then $m+1 \neq 0$, so

leading to two cases. If $m \neq -1$, then $m + 1 \neq 0$, so

$$\int_{\gamma} z^m dz = \frac{iR^{m+1}}{m+1} \left(\sin\left((m+1)t\right) - i\cos\left((m+1)t\right) \Big|_0^{2\pi} \right) = \frac{iR^{m+1}}{m+1} \left((0-i) - (0-i) \Big|_0^{2\pi} \right) = 0.$$

Otherwise, we have $m = -1$, in which case $\int_{\gamma} z^m dz = i \int_0^{2\pi} e^0 dt = i(2\pi - 0) = 2\pi i.$

That is,
$$\int_{\gamma} z^m dz = \begin{cases} 2\pi i & \text{if } m = -1, \\ 0i & \text{if } m \neq -1. \end{cases}$$

(b): For $z = Re^{i}t$ on the curve γ , we have |z| = R. Thus $\int_{\gamma} |z|^{m} dz = R^{m} \int_{\gamma} dz = R^{m} \int_{\gamma} z^{0} dz = R^{m} \cdot 0 = \boxed{0}$ where we have applied part (a) with m = 0.

(c): For
$$z = Re^{it}$$
 on the curve γ , we have $\overline{z} = Re^{-it} = R^2 z^{-1}$. Thus $\int_{\gamma} \overline{z}^m dz = R^{2m} \int_{\gamma} z^{-m} dz = \boxed{\begin{cases} 2\pi i R^2 & \text{if } m = 1, \\ 0i & \text{if } m \neq 1 \end{cases}}$

where we have applied part (a) with -m in place of m.

(d): By our parametrization of γ , we have

$$|dz| = \sqrt{(x')^2 + (y')^2} \, dt = \sqrt{R^2 \sin^2 t + R^2 \cos^2 t} \, dt = R \, dt$$

and $|z| = R$, so $\int_{\gamma} |z^m| |dz| = \int_0^{2\pi} R^m \cdot R \, dt = \boxed{2\pi R^{m+1}}$

Problem 4. IV.1, #5. Use the *ML*-estimate to prove that $\left| \oint_{|z-1|=1} \frac{e^z}{z+1} dz \right| < 2\pi e^2$.

Proof. For all z on the path γ given by |z - 1| = 1, we have $|\operatorname{Re} z - 1| \le |z - 1| = 1$, and hence $\operatorname{Re}(z) \le 2$. Therefore, $|e^z| = e^{\operatorname{Re} z} \le e^2$.

Also for z on γ , we have $2 = |(z+1) - (z-1)| \le |z+1| + |z-1| = |z+1| + 1$, and hence $|z+1| \ge 1$. Thus, $\left|\frac{e^z}{z+1}\right| \le \frac{e^2}{1} = e^2$. So use $M = e^2$.

The curve γ is a circle of radius 1, so its length is $L = 2\pi$.

Therefore, by the *ML*-estimate,
$$\left| \oint_{|z-1|=1} \frac{e^z}{z+1} dz \right| \le ML = 2\pi e^2$$
. But we need <.

So split γ into the right half γ_1 and the left half γ_2 . Both of these curves have length $L' = \pi$.

For any z on γ_1 , we have $\operatorname{Re} z \ge 1$, so $|z+1| \ge |\operatorname{Re} z+1| \ge 2$. Thus, for any such z, we have $\left|\frac{e^z}{z+1}\right| \le \frac{e^2}{2}$. So we may use $M_1 = \frac{e^2}{2}$ on γ_1 , while keeping the same bound M on γ_2 .

Thus, applying the bound M_1L' to γ_1 and ML' to γ_2 , we have:

$$\left| \oint_{|z-1|=1} \frac{e^z}{z+1} \, dz \right| \le \left| \oint_{\gamma_1} \frac{e^z}{z+1} \, dz \right| + \left| \oint_{\gamma_2} \frac{e^z}{z+1} \, dz \right| \le \frac{e^2}{2} \cdot \pi + e^2 \cdot \pi = \frac{3}{2} e^2 \pi < 2\pi e^2 \qquad \qquad \text{QED}$$

Note 1: The key inequalities $\operatorname{Re} z \leq 2$ and $|z+1| \geq 1$ can also be seen just by drawing a picture of the circle |z-1| = 1, with no careful inequality computations. The largest real part on γ is at the rightmost point of the circle, at z = 2, so $\operatorname{Re} z \leq 2$ for all z on γ . And the closest point to -1 is at z = 0, so $|z+1| \geq 1$ for all z on γ .

Note 2: One can also reduce the bound on γ_2 to $M_2 = e$, since $\operatorname{Re} z \leq 1$ there, so $|e^z| \leq e$. But we only need to prove a slight improvement on the $2\pi e^2$ bound.