Math 345, Fall 2024

Solutions to Homework #11

Problem 1. III.2, #5. Fix $0 < a < b$, and let $D = \{z \in \mathbb{C} : a < |z| < b\} \setminus (-b, -a)$, which is a slit annulus. Given points $A, B \in D$ and two paths γ_0, γ_1 from A to B in D, give an explicit homotopy from γ_0 to γ_1 in D.

Solution/Proof. Note that D can be rewritten as $D = \{z \in \mathbb{C} : a < |z| < b \text{ and } -\pi < \text{Arg } z < \pi\},\$ so that both $|\cdot|$ and Arg are continuous functions on D, with $|\cdot|$ taking values in (a, b) , and Arg taking values in $(-\pi, \pi)$.

For each of $j = 0, 1$, write $\gamma_j(t) = r_j(t)e^{\theta_j(t)}$. That is,

 $r_j : [0, 1] \to (a, b)$ by $r_j(t) = |\gamma_j(t)|$, and $\theta_j : [0, 1] \to (-\pi, \pi)$ by $\theta_j(t) = \text{Arg}(\gamma_j(t)),$

both of which are continuous functions on [0, 1], since each is a composition of continuous functions.

Define $R : [0,1] \times [0,1] \to (a, b)$ and $S : [0,1] \times [0,1] \to (-\pi, \pi)$ by

 $R(s,t) = (1-s)r_0(t) + sr_1(t)$ and $S(s,t) = (1-s)\theta_0(t) + s\theta_1(t)$,

both of which are continuous functions, since each r_j and θ_j is continuous. Moreover, the image of R really lies in (a, b) , since $r_j(t) \in (a, b)$ for all $t \in [0, 1]$ for each of $j = 0, 1$. Similarly, the image of S really lies in $(-\pi, \pi)$.

Thus, we may define $T : [0,1] \times [0,1] \rightarrow D$ by $|T(s,t) = R(s,t)e^{iS(s,t)}$

The image of T really lies in D, since the images of R and S lie in (a, b) and $(-\pi, \pi)$, respectively. In addition, T is continuous since R and S are both continuous.

It remains to check that T has the correct boundary values. For any $s \in [0, 1]$, we have

 $R(s, 0) = (1 - s)|\gamma_0(0)| + s|\gamma_1(0)| = (1 - s)|A| + s|A| = |A|,$ and similarly $S(s, 0) = \text{Arg}(A), R(s, 1) = |B|$, and $S(s, 1) = \text{Arg}(B)$.

Thus, $T(s, 0) = |A|e^{i \text{Arg}(A)} = A$ and $T(s, 1) = |B|e^{i \text{Arg}(B)} = B$ for all $s \in [0, 1]$.

Finally, for any $t \in [0, 1]$, we have $R(0, t) = r_0(t)$ and $S(0, t) = \theta_0(t)$, so that $T(0,t) = r_0(t)e^{\theta_0(t)} = \gamma_0(t)$. Similarly, $T(1,t) = \gamma_1(t)$.

Thus, T is a homotopy fitting the required conditions. QED

Problem 2. IV.1, $\#1(a,b,c)$. Let γ be the boundary of the triangle $\{0 \le x \le 1, 0 \le y \le 1$ x, oriented counterclockwise. Parametrize γ and use your parametrization to compute each of the following integrals:

(a)
$$
\int_{\gamma} \text{Re}(z) dz
$$
 (b) $\int_{\gamma} \text{Im}(z) dz$ (c) $\int_{\gamma} z dz$

Solutions. Define $\gamma_1, \gamma_2, \gamma_3 : [0, 1] \to \mathbb{C}$ by

$$
\gamma_1(t) = t, \qquad \gamma_2(t) = (1 - t) + it, \qquad \gamma_3(t) = i(1 - t),
$$

so that $\gamma = \gamma_1 + \gamma_2 + \gamma_3$. Writing each γ_j as $x(t) + iy(t)$, with $dz = dx + idy$, this means for γ_1 : $x = t$, $y = 0$, $dz = dt$

for
$$
\gamma_2
$$
: $x = 1 - t$, $y = t$, $dz = (-1 + i)dt$
for γ_3 : $x = 0$, $y = 1 - t$, $dz = -idt$

Recalling $dz = dx + idy$, we can now compute the integrals:

(a):
$$
\int_{\gamma} \text{Re}(z) dz = \int_{\gamma_1} x dz + \int_{\gamma_2} x dz + \int_{\gamma_3} x dz
$$

\n
$$
= \int_{0}^{1} t dt + \int_{0}^{1} (1-t)(-1+i) dt + \int_{0}^{1} 0(-i) dt = \left[\frac{t^2}{2}\Big|_{0}^{1}\right] + (-1+i) \left[t - \frac{t^2}{2}\Big|_{0}^{1}\right] + 0
$$

\n
$$
= \left(\frac{1}{2} - 0\right) + (-1+i) \left(1 - \frac{1}{2} - 0\right) = \left[\frac{i}{2}\right]
$$

\n(b):
$$
\int_{\gamma} \text{Im}(z) dz = \int_{\gamma_1} y dz + \int_{\gamma_2} y dz + \int_{\gamma_3} y dz
$$

\n
$$
= \int_{0}^{1} 0 dt + \int_{0}^{1} t(-1+i) dt + \int_{0}^{1} (1-t)(-i) dt = 0 + (-1+i) \left[\frac{t^2}{2}\Big|_{0}^{1}\right] + (-i) \left[t - \frac{t^2}{2}\Big|_{0}^{1}\right]
$$

\n
$$
= 0 + (-1+i) \left(\frac{1}{2} - 0\right) + (-i) \left(1 - \frac{1}{2} - 0\right) = \boxed{-\frac{1}{2}}
$$

\n(c):
$$
\int_{\gamma} z dz = \int_{\gamma} \text{Re}(z) dz + i \int_{\gamma} \text{Im}(z) dz = \frac{i}{2} + i \left(-\frac{i}{2}\right) = \boxed{0}
$$

Problem 3. IV.1, #3, variant. Fix $R > 0$. Let γ be the circle $\{|z| = R\}$, oriented counterclockwise. Parametrize γ and use your parametrization to compute each of the following integrals for each integer $m = 0, \pm 1, \pm 2, \ldots$

(a)
$$
\int_{\gamma} z^m dz
$$
 (b) $\int_{\gamma} |z|^m dz$ (c) $\int_{\gamma} \overline{z}^m dz$ (d) $\int_{\gamma} |z^m|| dz|$

Solutions. Define $\gamma : [0, 2\pi] \to \mathbb{C}$ by $\gamma(t) = Re^{it} = R \cos t + iR \sin t$:

Then since $x = R \cos t$ and $y = R \sin t$, we have $dx = -R \sin t dt$ and $dy = R \cos t dt$, so

$$
dz = dx + i dy = R(-\sin t + i\cos t) dt = iR(\cos t + i\sin t) dt = iz dt
$$

So we can now compute the integrals:

(a):
$$
\int_{\gamma} z^m dz = \int_0^{2\pi} z^m (iz) dt = iR^{m+1} \int_0^{2\pi} e^{i(m+1)t} dt = iR^{m+1} \int_0^{2\pi} \cos ((m+1)t) + i \sin ((m+1)t) dt
$$
 leading to two cases. If $m \neq -1$, then $m+1 \neq 0$, so

leading to two cases. If $m \neq -1$, then $m + 1 \neq 0$, so

$$
\int_{\gamma} z^m dz = \frac{iR^{m+1}}{m+1} \left(\sin \left((m+1)t \right) - i \cos \left((m+1)t \right) \Big|_0^{2\pi} \right) = \frac{iR^{m+1}}{m+1} \left((0-i) - (0-i) \Big|_0^{2\pi} \right) = 0.
$$

Otherwise, we have $m = -1$, in which case $\int_{\gamma} z^m dz = i \int_0^{2\pi} e^0 dt = i(2\pi - 0) = 2\pi i$.

That is,
$$
\int_{\gamma} z^m dz = \begin{cases} 2\pi i & \text{if } m = -1, \\ 0i & \text{if } m \neq -1. \end{cases}
$$

(b): For $z = Re^{i}t$ on the curve γ , we have $|z| = R$. Thus Z γ $|z|^m dz = R^m$ γ $dz = R^m$ γ $z^0 dz = R^m \cdot 0 = \boxed{0}$ where we have applied part (a) with $m = 0$.

(c): For
$$
z = Re^i t
$$
 on the curve γ , we have $\overline{z} = Re^{-it} = R^2 z^{-1}$. Thus,
\n
$$
\int_{\gamma} \overline{z}^m dz = R^{2m} \int_{\gamma} z^{-m} dz = \begin{bmatrix} 2\pi i R^2 & \text{if } m = 1, \\ 0 & \text{if } m \neq 1 \end{bmatrix}
$$

where we have applied part (a) with $-m$ in place of m.

(d): By our parametrization of γ , we have

$$
|dz| = \sqrt{(x')^2 + (y')^2} dt = \sqrt{R^2 \sin^2 t + R^2 \cos^2 t} dt = R dt
$$

and $|z| = R$, so $\int_{\gamma} |z^m| |dz| = \int_0^{2\pi} R^m \cdot R dt = \boxed{2\pi R^{m+1}}$

Problem 4. IV.1, $#5$. Use the ML-estimate to prove that $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ i
I $|z-1|=1$ e z $\frac{c}{z+1}$ dz $< 2\pi e^2$.

Proof. For all z on the path γ given by $|z - 1| = 1$, we have $|Re z - 1| \leq |z - 1| = 1$, and hence $\text{Re}(z) \leq 2$. Therefore, $|e^z| = e^{\text{Re } z} \leq e^2$.

Also for z on γ , we have $2 = |(z+1)-(z-1)| \le |z+1| + |z-1| = |z+1| + 1$, and hence $|z+1| \ge 1$. Thus, $\Bigg|$ e z $z + 1$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\leq \frac{e^2}{1}$ $\frac{e}{1} = e^2$. So use $M = e^2$.

The curve γ is a circle of radius 1, so its length is $L = 2\pi$.

Therefore, by the ML-estimate, l
L $|z-1|=1$ e z $\frac{c}{z+1}$ dz $\begin{array}{c} \hline \end{array}$ $\leq ML = 2\pi e^2$. But we need <.

So split γ into the right half γ_1 and the left half γ_2 . Both of these curves have length $L' = \pi$.

For any z on γ_1 , we have $\text{Re } z \geq 1$, so $|z + 1| \geq |\text{Re } z + 1| \geq 2$. Thus, for any such z, we have e z $z + 1$ $\leq \frac{e^2}{2}$ $\frac{e^2}{2}$. So we may use $M_1 = \frac{e^2}{2}$ $\frac{2}{2}$ on γ_1 , while keeping the same bound M on γ_2 .

Thus, applying the bound M_1L' to γ_1 and ML' to γ_2 , we have:

$$
\left| \oint_{|z-1|=1} \frac{e^z}{z+1} \, dz \right| \le \left| \oint_{\gamma_1} \frac{e^z}{z+1} \, dz \right| + \left| \oint_{\gamma_2} \frac{e^z}{z+1} \, dz \right| \le \frac{e^2}{2} \cdot \pi + e^2 \cdot \pi = \frac{3}{2} e^2 \pi < 2\pi e^2
$$
 QED

Note 1: The key inequalities Re $z \leq 2$ and $|z + 1| \geq 1$ can also be seen just by drawing a picture of the circle $|z - 1| = 1$, with no careful inequality computations. The largest real part on γ is at the rightmost point of the circle, at $z = 2$, so Re $z \le 2$ for all z on γ . And the closest point to -1 is at $z = 0$, so $|z + 1| \ge 1$ for all z on γ .

Note 2: One can also reduce the bound on γ_2 to $M_2 = e$, since $\text{Re } z \leq 1$ there, so $|e^z| \leq e$. But we only need to prove a slight improvement on the $2\pi e^2$ bound.