Math 345, Fall 2024

Solutions to Homework #10

Problem 1. III.1, $\#1(a,c)$. Compute \blacksquare γ $y^2 dx + x^2 dy$ along each of the following two paths γ from $(0, 0)$ to $(2, 4)$:

- γ is the arc of the parabola $y = x^2$ from $(0,0)$ to $(2,4)$.
- γ is the vertical line segment (0,0) to (0,4), followed by the horizontal line segment from $(0, 4)$ to $(2, 4)$.

Solution. First path: parametrize by $x(t) = t$, $y(t) = t^2$ for $0 \le t \le 2$. Then $dx = dt$ and $dy = 2t dt$. So the integral is \int_0^2 0 $(t^2)^2 + t^2(2t) dt = \int_0^2$ $\boldsymbol{0}$ $t^4 + 2t^3 dt = \frac{1}{5}$ $\frac{1}{5}t^5 + \frac{1}{2}$ $\left|\frac{1}{2}t^4\right|$ 2 0 $=\frac{32}{5}$ $\frac{32}{5} + \frac{16}{2}$ $\frac{16}{2} - 0 = \frac{32 + 40}{5}$ $\frac{+40}{5} = \frac{72}{5}$ 5 Second path: First leg: parametrize by $x(t) = 0$, $y(t) = t$ for $0 \le t \le 4$. Then $dx = 0$ and $dy = dt$. So the integral is \int_0^4

0 $0 + 0 dt = 0$ Second leg: parametrize by $x(t) = t$, $y(t) = 4$ for $0 \le t \le 2$. Then $dx = dt$ and $dy = 0$. So the integral is \int_0^2 0 $4^2 + 0 dt = 16t$ 2 0 $= 32.$

So the full integral is $0 + 32 = 32$

Problem 2. III.1, $\#4$. Fix $R > 0$, and let γ be the semicircle in the upper half-plane from R to $-R$. Evaluate \int γ $y dx$ in two ways: first directly, and then using Green's Theorem. **Solution.** First method: parametrize γ by $x(t) = R \cos t$, $y(t) = R \sin t$ for $0 \le t \le \pi$. Then $dx = -R \sin t$, so the integral is \int_0^{π} 0 $-R^2 \sin^2 t \, dt = \frac{-R^2}{2}$ 2 \int_0^π 0 $1 - \cos 2t \, dt$ $=\frac{-R^2}{2}$ 2 $\left(t-\frac{1}{2}\right)$ $\left(\frac{1}{2}\sin 2t\right) = \frac{-R^2}{2}$ 2 $((\pi - 0) - (0 - 0)) = \boxed{-\frac{\pi}{2}}$ $\frac{\pi}{2}R^2$

Second method: let γ' be the path from $-R$ to R parametrized by $x = t$, $y = 0$ for $-R \le t \le R$. Then $dx = dt$, so $\int_{\gamma'}^{\cdot} y\,dx = \int_0^{\tau}$ $\boldsymbol{0}$ $0 dt = 0.$

Let D be the half-disk enclosed by $\gamma + \gamma'$. Let $P = y$ and $Q = 0$, so that $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ $\frac{y}{y} = 0 - 1 = -1.$ Then by Green's Theorem (noting that $\gamma + \gamma'$ is oriented positively with respect to D), we have Z γ $y dx =$ γ $y dx + 0 =$ γ $y dx +$ $\int_{\gamma'} y\,dx = \int$ ∂D $y dx = \iint$ D $-1 dA = -Area(D) = \sqrt{\frac{\pi}{2}}$ $\frac{\pi}{2}R^2$

[*Note*: of course, one can instead compute \int D −1 dA by hand. Using polar coordinates, it is \int_0^π 0 \int^R 0 $(-1)r dr d\theta$, which soon evaluates to $-\frac{\pi}{2}$ $\frac{\pi}{2}R^2$ as above.]

Problem 3. III.1, $#5$, variant. Let D be a bounded region in the plane with piecewise smooth boundary curve ∂D . Use Green's Theorem to prove that \Box ∂D $x dy$ is the area of D.

Proof. Let $P = 0$ and $Q = x$, so that $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1 - 0 = 1$. By Green's Theorem, then: ∂D $x dy =$ ∂D $P dx + Q dy = \iint$ D $1 dA = \text{Area}(D)$ QED

Problem 4. III.2, $\#1(b,c,d)$. For each of the following differential forms ω , determine whether ω is independent of path or not.

If yes, find a function h such that $dh = \omega$. If no, find a closed path γ around the origin such that Z $\omega \neq 0.$

(b)
$$
\omega = x^2 dx + y^5 dy
$$
 (c) $\omega = y dx + x dy$ (d) $\omega = y dx - x dy$
Solutions. (b): $\boxed{\text{Yes, independent of path}}$

We need $h_x = x^2$ and $h_y = y^5$, so we may choose $h = \frac{x^3}{2}$ $rac{x^3}{3} + \frac{y^6}{6}$ $\frac{\partial}{\partial 6}$ which has $dh = \omega$.

(c): Yes, independent of path

γ

We need $h_x = y$ and $h_y = x$. The first condition gives $h = xy + g(y)$, so $h_y = x + g'(y)$. Therefore we need $g'(y) = 0$, so we may choose $g = 0$. That is, we may choose $|h = xy|$ which has $dh = \omega$.

(d): No, not independent of path since $Q_x - P_y = -1 - 1 = -2 \neq 0$.

Let γ be the (counterclockwise) circular path $|z|=1$, which we parametrize by $x = \cos t$, $y = \sin t$ for $0 \le t \le 2\pi$. Then $dx = -\sin t dt$ and $dy = \cos t dt$, so

$$
\int_{\gamma} \omega = \int_0^{2\pi} (\sin t)(-\sin t) + (-\cos t)(\cos t) dt = \int_0^{2\pi} (-1) dt = -t \Big|_0^{2\pi} = -2\pi + 0 = -2\pi \neq 0
$$

Problem 5. III.2, #3. Fix $b > a > 0$, and let D be the annulus $a < |z| < b$. Let $P, Q : D \rightarrow$ R be smooth functions such that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Use Green's Theorem to prove that the value of l. $P dx + Q dy$ is independent of the radius r, for $a < r < b$.

 $|z|=r$ **Proof.** Given arbitrary $r, s \in (a, b)$, we must show that q $|z|=r$ $P dx + Q dy = q$ $|z|=s$ $P dx + Q dy$. If $r = s$, this is clearly true, and so without loss of generality, we may assume that $s > r$.

Let E be the open annulus $r < |z| < s$, which is contained in D. Note that the boundary of E consists of the circle $|z| = s$ traced counterclockwise together with the circle $|z| = r$ traced clockwise. Thus,

$$
\oint_{|z|=s} P dx + Q dy - \oint_{|z|=r} P dx + Q dy = \int_{\partial E} P dx + Q dy = \iint_{E} \frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} dA = \iint_{E} 0 dA = 0,
$$
\nwhere the second equality is by Green's Theorem and the third is by hypothesis.

where the second equality is by Green's Theorem and the third is by hypothesis.

Adding
$$
\oint_{|z|=r} P dx + Q dy
$$
 to both sides, then we have $\oint_{|z|=r} P dx + Q dy = \oint_{|z|=s} P dx + Q dy$. QED