Math 345, Fall 2024

Solutions to Homework #10

Problem 1. III.1, #1(a,c). Compute $\int_{\gamma} y^2 dx + x^2 dy$ along each of the following two paths γ from (0,0) to (2,4):

- γ is the arc of the parabola $y = x^2$ from (0,0) to (2,4).
- γ is the vertical line segment (0,0) to (0,4), followed by the horizontal line segment from (0,4) to (2,4).

Solution. First path: parametrize by x(t) = t, $y(t) = t^2$ for $0 \le t \le 2$. Then dx = dt and $dy = 2t \, dt$. So the integral is $\int_{0}^{2} (t^2)^2 + t^2(2t) \, dt = \int_{0}^{2} t^4 + 2t^3 \, dt = \frac{1}{5}t^5 + \frac{1}{2}t^4 \Big|_{0}^{2} = \frac{32}{5} + \frac{16}{2} - 0 = \frac{32 + 40}{5} = \boxed{\frac{72}{5}}$ Second path: First leg: parametrize by x(t) = 0, y(t) = t for $0 \le t \le 4$.

Second path: First leg: parametrize by x(t) = 0, y(t) = t for $0 \le t \le 4$. Then dx = 0 and dy = dt. So the integral is $\int_0^4 0 + 0 \, dt = 0$ Second leg: parametrize by x(t) = t, y(t) = 4 for $0 \le t \le 2$. Then dx = dt and dy = 0. So the integral is $\int_0^2 4^2 + 0 \, dt = 16t \Big|_0^2 = 32$.

So the full integral is 0 + 32 = 32

Problem 2. III.1, #4. Fix R > 0, and let γ be the semicircle in the upper half-plane from R to -R. Evaluate $\int_{\gamma} y \, dx$ in two ways: first directly, and then using Green's Theorem.

Solution. First method: parametrize
$$\gamma$$
 by $x(t) = R \cos t$, $y(t) = R \sin t$ for $0 \le t \le \pi$.
Then $dx = -R \sin t$, so the integral is $\int_0^{\pi} -R^2 \sin^2 t \, dt = \frac{-R^2}{2} \int_0^{\pi} 1 - \cos 2t \, dt$
$$= \frac{-R^2}{2} \left(t - \frac{1}{2} \sin 2t \right) = \frac{-R^2}{2} \left((\pi - 0) - (0 - 0) \right) = \boxed{-\frac{\pi}{2}R^2}$$

Second method: let γ' be the path from -R to R parametrized by x = t, y = 0 for $-R \le t \le R$. Then dx = dt, so $\int_{\gamma'} y \, dx = \int_0^{\pi} 0 \, dt = 0$.

Let *D* be the half-disk enclosed by $\gamma + \gamma'$. Let P = y and Q = 0, so that $\frac{\partial Q}{x} - \frac{\partial P}{y} = 0 - 1 = -1$. Then by Green's Theorem (noting that $\gamma + \gamma'$ is oriented positively with respect to *D*), we have $\int_{\gamma} y \, dx = \int_{\gamma} y \, dx + 0 = \int_{\gamma} y \, dx + \int_{\gamma'} y \, dx = \int_{\partial D} y \, dx = \iint_D -1 \, dA = -\operatorname{Area}(D) = \boxed{-\frac{\pi}{2}R^2}$

[*Note*: of course, one can instead compute $\iint_D -1 \, dA$ by hand. Using polar coordinates, it is $\int_0^{\pi} \int_0^R (-1)r \, dr \, d\theta$, which soon evaluates to $-\frac{\pi}{2}R^2$ as above.]

Problem 3. III.1, #5, variant. Let *D* be a bounded region in the plane with piecewise smooth boundary curve ∂D . Use Green's Theorem to prove that $\int_{\partial D} x \, dy$ is the area of *D*.

Proof. Let P = 0 and Q = x, so that $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1 - 0 = 1$. By Green's Theorem, then: $\int_{\partial D} x \, dy = \int_{\partial D} P \, dx + Q \, dy = \iint_D 1 \, dA = \operatorname{Area}(D)$ QED

Problem 4. III.2, #1(b,c,d). For each of the following differential forms ω , determine whether ω is independent of path or not.

If yes, find a function h such that $dh = \omega$. If no, find a closed path γ around the origin such that $\int_{T} \omega \neq 0$.

(b) $\omega = x^2 dx + y^5 dy$ (c) $\omega = y dx + x dy$ (d) $\omega = y dx - x dy$

Solutions. (b): Yes, independent of path

We need $h_x = x^2$ and $h_y = y^5$, so we may choose $h = \frac{x^3}{3} + \frac{y^6}{6}$ which has $dh = \omega$.

(c): Yes, independent of path

We need $h_x = y$ and $h_y = x$. The first condition gives h = xy + g(y), so $h_y = x + g'(y)$. Therefore we need g'(y) = 0, so we may choose g = 0. That is, we may choose h = xy which has $dh = \omega$.

(d): No, not independent of path since $Q_x - P_y = -1 - 1 = -2 \neq 0$.

Let γ be the (counterclockwise) circular path |z| = 1, which we parametrize by $x = \cos t$, $y = \sin t$ for $0 \le t \le 2\pi$. Then $dx = -\sin t \, dt$ and $dy = \cos t \, dt$, so

$$\int_{\gamma} \omega = \int_{0}^{2\pi} (\sin t)(-\sin t) + (-\cos t)(\cos t) \, dt = \int_{0}^{2\pi} (-1) \, dt = -t \Big|_{0}^{2\pi} = -2\pi + 0 = -2\pi \neq 0$$

Problem 5. III.2, #3. Fix b > a > 0, and let D be the annulus a < |z| < b. Let $P, Q : D \to \mathbb{R}$ be smooth functions such that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Use Green's Theorem to prove that the value of $\oint_{|z|=r} P \, dx + Q \, dy$ is independent of the radius r, for a < r < b.

Proof. Given arbitrary $r, s \in (a, b)$, we must show that $\oint_{|z|=r} P \, dx + Q \, dy = \oint_{|z|=s} P \, dx + Q \, dy$. If r = s, this is clearly true, and so without loss of generality, we may assume that s > r.

Let *E* be the open annulus r < |z| < s, which is contained in *D*. Note that the boundary of *E* consists of the circle |z| = s traced counterclockwise together with the circle |z| = r traced clockwise. Thus,

$$\oint_{|z|=s} P \, dx + Q \, dy - \oint_{|z|=r} P \, dx + Q \, dy = \int_{\partial E} P \, dx + Q \, dy = \iint_E \frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \, dA = \iint_E 0 \, dA = 0,$$

where the second equality is by Green's Theorem and the third is by hypothesis.

Adding
$$\oint_{|z|=r} P \, dx + Q \, dy$$
 to both sides, then we have $\oint_{|z|=r} P \, dx + Q \, dy = \oint_{|z|=s} P \, dx + Q \, dy$. QED