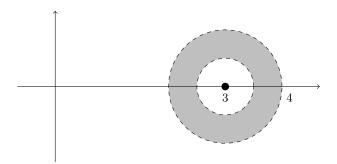
Math 345, Fall 2024

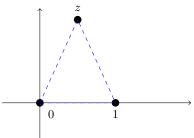
annulus:

Solutions to Selected Homework Problems, HW #1

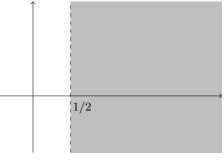
I.1, #1(b,e): Identify and sketch these sets of points. (b): 1 < |2z - 6| < 2 and (e) |z - 1| < |z|. **Solutions**. (b): Since $|2z - 6| = |2| \cdot |z - 3| = 2|z - 3|$, this set is given by $\frac{1}{2} < |z - 3| < 1$. That is, it is the set of points $z \in \mathbb{C}$ whose distance from 3 is strictly between 1/2 and 1. So it's this open



(e): Since |z-1| is the distance from z to 1, and |z| is the distance from z to 0, the set where |z-1| < |z| is the set of points $z \in \mathbb{C}$ which are closer to 1 than to 0. The set of points where these two distances are the same is the vertical line $\operatorname{Re} z = \frac{1}{2}$, because on this line, the distances from z to each of 0 and 1 are the same, since the three points form an isosceles triangle:



So the desired set is the set of points strictly to the *right* of that vertical line, which is this open half-plane:



Alternative argument in (c) to see that the region is $\operatorname{Re} z > 1/2$. Squaring both sides of the (real) inequality |z - 1| < |z| gives $|z - 1|^2 < |z|^2$. Writing z = x + iy, this inequality is just $(x - 1)^2 + y^2 < x^2 + y^2$, which expands to -2x + 1 < 0, i.e., 1 < 2x, or equivalently x > 1/2. That is, $\operatorname{Re} z > 1/2$.

I.1, $#2(\mathbf{a})$: Verify the identity $\overline{zw} = \overline{z} \overline{w}$

Proof. Given $z, w \in \mathbb{C}$, write z = x + iy and w = u + iv with $x, y, u, v \in \mathbb{R}$. Then

$$\overline{zw} = \overline{(xu - yv) + i(xv + yu)} = (xu - yv) - i(xv + yu) = (x - iy)(u - iv) = \overline{z}\,\overline{w}$$
QED

I.1, #5: Show that (for all $z, w \in \mathbb{C}$) $|\operatorname{Re} z| \le |z|$, that $|\operatorname{Im} z| \le |z|$, and that $|z+w|^2 = |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w})$. Use this to prove the triangle inequality.

Proof. For the first two statements, given $z \in \mathbb{C}$, write z = x + iy. Then $|\operatorname{Re} z| = |x| = \sqrt{x^2} \le \sqrt{x^2 + y^2} = |z|$ and $|\operatorname{Im} z| = |y| = \sqrt{y^2} \le \sqrt{x^2 + y^2} = |z|$. For the third statement, given $z, w \in \mathbb{C}$, let $c = z\overline{w} \in \mathbb{C}$. Then $|z + w|^2 = (z + w)(\overline{z + w}) = (z + w)(\overline{z} + \overline{w}) = z\overline{z} + w\overline{w} + z\overline{w} + \overline{z}w = |z|^2 + |w|^2 + c + \overline{c}$, since $\overline{c} = \overline{zw} = \overline{zw} = \overline{zw}$. Writing c = a + bi with $a, b \in i$, we have $c + \overline{c} = (a + bi) + (a - bi) = 2a = 2\operatorname{Re}(c)$. Thus, $|z + w|^2 = |z|^2 + |w|^2 + 2\operatorname{Re}(c) = |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w})$.

Finally, to prove the triangle inequality, the previous identity gives $\begin{aligned} |z+w|^2 &= |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w}) \leq |z|^2 + |w|^2 + 2|\operatorname{Re}(z\overline{w})| \leq |z|^2 + |w|^2 + 2|z\overline{w}| \\ &= |z|^2 + |w|^2 + 2|z||\overline{w}| = |z|^2 + |w|^2 + 2|z||w| = (|z| + |w|)^2. \end{aligned}$

All quantities here are nonnegative real numbers, so taking square roots gives $|z+w| \leq |z|+|w|$. QED

Alternative proof of third identity. Given $z, w \in \mathbb{C}$, write z = x + iy and w = u + iv with $x, y, u, v \in \mathbb{R}$. Then

 $\begin{aligned} |z+w|^2 &= |(x+u)+i(y+v)|^2 = (x+u)^2 + (y+v)^2 = x^2 + 2xu + u^2 + y^2 + 2yv + v^2 \\ &= (x^2+y^2) + (u^2+v^2) + 2(xu+yv) = |z|^2 + |w|^2 + 2\operatorname{Re}\left((xu+yv)+i(yu-xv)\right) \\ &= |z|^2 + |w|^2 + 2\operatorname{Re}\left((x+iy)(u-iv)\right) = |z|^2 + |w|^2 + 2\operatorname{Re}\left(z\overline{w}\right) \end{aligned}$

I.2, #1(b): Find all values of $\sqrt{i-1}$ in both polar and cartesian, and plot them.

Solution. We have $|i - 1| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$, and $\operatorname{Arg}(i - 1) = 3\pi/4$, as we see here:

Thus, the two square roots of i-1 are of the form $re^{i\theta}$ where $r = \sqrt[4]{2}$ and $\theta = \frac{3}{8}\pi + \frac{2\pi}{2}n$ for n = 0, 1. [To make the numbers smaller, let's actually subtract 2π from the second θ to get $-5\pi/8$.]

So in polar, the two roots are $\sqrt[4]{2}e^{3\pi i/8}$ and $\sqrt[4]{2}e^{-5\pi i/8}$ which in cartesian are $\sqrt[4]{2}\cos(3\pi/8) + i\sqrt[4]{2}\sin(3\pi/8)$ and $\sqrt[4]{2}\cos(5\pi/8) - i\sqrt[4]{2}\sin(5\pi/8)$

Note 1: When I wrote the cartesian answers above, I used the facts that $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$.

Note 2: the second root is, of course, simply the negative of the first, since it is $e^{i\pi}$ times the first. Note 3: You could "simplify" those cartesian formulas a bit using the half-angle identities to get $\cos^2(3\pi/8) = \frac{1}{2}(1 + \cos(3\pi/4)) = \frac{\sqrt{2}-1}{2\sqrt{2}}$ and hence $\cos(3\pi/8) = \frac{\sqrt{\sqrt{2}-1}}{2^{3/4}}$. Similarly $\sin(3\pi/8) = \frac{\sqrt{\sqrt{2}+1}}{2^{3/4}}$. So the cartesian answers would be $\pm \left(\frac{\sqrt{\sqrt{2}-1}}{\sqrt{2}} + i\frac{\sqrt{\sqrt{2}+1}}{\sqrt{2}}\right)$, but I'm not sure that really looks any nicer. **I.2**, #4: For which integers $n \ge 1$ is *i* an *n*-th root of unity?

Solution/Proof. We are being asked for the set of integers $n \ge 1$ for which $i^n = 1$. We claim that this set is precisely those integers $n \ge 1$ that are divisible by 4

To see this, writing an arbitrary integer $n \ge 1$ as n = 4k + j, where k is an integer and $j \in \{0, 1, 2, 3\}$. We must show that $i^n = 1$ if and only if j = 0. If j = 0, then $i^n = i^{4k} = (i^4)^k = 1^k = 1$, as desired.

Conversely, if $j \in \{1, 2, 3\}$, then $i^n = i^{4k} \cdot i^j = i^j \neq 1$, since $i^1 = i$ and $i^2 = -1$ and $i^3 = -i$. QED

I.2, #8: Prove that $\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$ and $\sin(2\theta) = 2\cos\theta\sin\theta$ using DeMoivre's formulae. Find corresponding formulae for $\cos(4\theta)$ and $\sin(4\theta)$.

Solution/Proof. DeMoivre for n = 2 says, for all $\theta \in \mathbb{R}$

$$\cos(2\theta) + i\sin(2\theta) = (\cos\theta + i\sin\theta)^2 = \cos^2\theta + 2i\cos\theta\sin\theta - \sin^2\theta$$

Taking real parts of both sides gives $\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$. Taking imaginary parts gives $\sin(2\theta) = 2\cos\theta\sin\theta$, as desired.

For n = 4, DeMoivre gives

$$\cos(4\theta) + i\sin(4\theta) = (\cos\theta + i\sin\theta)^4 = \cos^4\theta + 4i\cos^3\theta\sin\theta - 6\cos^2\theta\sin^2\theta - 4i\cos\theta\sin^3\theta + \sin^4\theta$$

Taking real parts gives
$$\cos(4\theta) = \cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta$$

Taking imaginary parts gives
$$\sin(4\theta) = 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta$$

Alternative derivation of last identities. Applying the 2θ identities to 2θ itself, we have

$$\cos(4\theta) = \cos\left(2(2\theta)\right) = \cos^2(2\theta) - \sin^2(2\theta) = \left(\cos^2(\theta) - \sin^2(\theta)\right)^2 - \left(2\cos\theta\sin\theta\right)^2 = \cos^4\theta - 2\cos^2\theta\sin^2\theta + \sin^4\theta - 4\cos^2\theta\sin^2\theta = \cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta$$

and $\sin(4\theta) = \sin(2(2\theta)) = 2\cos(2\theta)\sin(2\theta) = 2(\cos^2(\theta) - \sin^2(\theta)) \cdot (2\cos\theta\sin\theta)$ = $4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta$