
Math 345, Fall 2024

Solutions to Selected Homework Problems, HW #1

I.1, #1(b,e): Identify and sketch these sets of points. (b): 1 < |2z − 6| < 2 and (e) |z − 1| < |z|.

Solutions. (b): Since |2z − 6| = |2| · |z − 3| = 2|z − 3|, this set is given by 1
2 < |z − 3| < 1. That

is, it is the set of points z ∈ C whose distance from 3 is strictly between 1/2 and 1. So it’s this open
annulus:
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(e): Since |z−1| is the distance from z to 1, and |z| is the distance from z to 0, the set where |z−1| < |z|
is the set of points z ∈ C which are closer to 1 than to 0. The set of points where these two distances
are the same is the vertical line Re z = 1

2 , because on this line, the distances from z to each of 0 and
1 are the same, since the three points form an isosceles triangle:
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z

So the desired set is the set of points strictly to the right of that vertical line, which is this open
half-plane:

1/2

Alternative argument in (c) to see that the region is Re z > 1/2. Squaring both sides of the
(real) inequality |z − 1| < |z| gives |z − 1|2 < |z|2. Writing z = x + iy, this inequality is just
(x− 1)2 + y2 < x2 + y2, which expands to −2x+ 1 < 0, i.e., 1 < 2x, or equivalently x > 1/2. That is,
Re z > 1/2.

I.1, #2(a): Verify the identity zw = z w

Proof. Given z, w ∈ C, write z = x+ iy and w = u+ iv with x, y, u, v ∈ R. Then



zw = (xu− yv) + i(xv + yu) = (xu− yv)− i(xv + yu) = (x− iy)(u− iv) = z w QED

I.1, #5: Show that (for all z, w ∈ C) |Re z| ≤ |z|, that | Im z| ≤ |z|, and that
|z + w|2 = |z|2 + |w|2 + 2Re(zw). Use this to prove the triangle inequality.

Proof. For the first two statements, given z ∈ C, write z = x+ iy. Then

|Re z| = |x| =
√
x2 ≤

√
x2 + y2 = |z| and | Im z| = |y| =

√
y2 ≤

√
x2 + y2 = |z|.

For the third statement, given z, w ∈ C, let c = zw ∈ C. Then
|z + w|2 = (z + w)(z + w) = (z + w)(z + w) = zz + ww + zw + zw = |z|2 + |w|2 + c+ c,

since c = zw = zw = zw.

Writing c = a+ bi with a, b ∈ i, we have c+ c = (a+ bi) + (a− bi) = 2a = 2Re(c).

Thus, |z + w|2 = |z|2 + |w|2 + 2Re(c) = |z|2 + |w|2 + 2Re(zw).

Finally, to prove the triangle inequality, the previous identity gives

|z + w|2 = |z|2 + |w|2 + 2Re(zw) ≤ |z|2 + |w|2 + 2|Re(zw)| ≤ |z|2 + |w|2 + 2|zw|
= |z|2 + |w|2 + 2|z||w| = |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2.

All quantities here are nonnegative real numbers, so taking square roots gives |z+w| ≤ |z|+ |w|. QED

Alternative proof of third identity. Given z, w ∈ C, write z = x + iy and w = u + iv with
x, y, u, v ∈ R. Then
|z + w|2 = |(x+ u) + i(y + v)|2 = (x+ u)2 + (y + v)2 = x2 + 2xu+ u2 + y2 + 2yv + v2

= (x2 + y2) + (u2 + v2) + 2(xu+ yv) = |z|2 + |w|2 + 2Re
(
(xu+ yv) + i(yu− xv)

)
= |z|2 + |w|2 + 2Re

(
(x+ iy)(u− iv)

)
= |z|2 + |w|2 + 2Re

(
zw

)
I.2, #1(b): Find all values of

√
i− 1 in both polar and cartesian, and plot them.

Solution. We have |i− 1| =
√
(−1)2 + 12 =

√
2, and Arg(i− 1) = 3π/4, as we see here:

i− 1

Thus, the two square roots of i− 1 are of the form reiθ where r = 4
√
2 and θ =

3

8
π+

2π

2
n for n = 0, 1.

[To make the numbers smaller, let’s actually subtract 2π from the second θ to get −5π/8.]

So in polar, the two roots are
4
√
2e3πi/8 and

4
√
2e−5πi/8

which in cartesian are
4
√
2 cos(3π/8) + i

4
√
2 sin(3π/8) and

4
√
2 cos(5π/8)− i

4
√
2 sin(5π/8)

Note 1: When I wrote the cartesian answers above, I used the facts that cos(−θ) = cos(θ) and
sin(−θ) = − sin(θ).

Note 2: the second root is, of course, simply the negative of the first, since it is eiπ times the first.

Note 3: You could “simplify” those cartesian formulas a bit using the half-angle identities to get

cos2(3π/8) = 1
2(1 + cos(3π/4)) =

√
2−1
2
√
2

and hence cos(3π/8) =

√√
2−1

23/4
. Similarly sin(3π/8) =

√√
2+1

23/4
.

So the cartesian answers would be ±
(√√

2− 1√
2

+ i

√√
2 + 1√
2

)
, but I’m not sure that really looks any

nicer.
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I.2, #4: For which integers n ≥ 1 is i an n-th root of unity?

Solution/Proof. We are being asked for the set of integers n ≥ 1 for which in = 1. We claim that

this set is precisely those integers n ≥ 1 that are divisble by 4

To see this, writing an arbitrary integer n ≥ 1 as n = 4k+ j, where k is an integer and j ∈ {0, 1, 2, 3}.
We must show that in = 1 if and only if j = 0.
If j = 0, then in = i4k = (i4)k = 1k = 1, as desired.
Conversely, if j ∈ {1, 2, 3}, then in = i4k · ij = ij ̸= 1, since i1 = i and i2 = −1 and i3 = −i. QED

I.2, #8: Prove that cos(2θ) = cos2 θ − sin2 θ and sin(2θ) = 2 cos θ sin θ using DeMoivre’s formulae.
Find corresponding formulae for cos(4θ) and sin(4θ).

Solution/Proof. DeMoivre for n = 2 says, for all θ ∈ R
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2 = cos2 θ + 2i cos θ sin θ − sin2 θ

Taking real parts of both sides gives cos(2θ) = cos2 θ − sin2 θ.
Taking imaginary parts gives sin(2θ) = 2 cos θ sin θ, as desired.

For n = 4, DeMoivre gives

cos(4θ) + i sin(4θ) = (cos θ + i sin θ)4 = cos4 θ + 4i cos3 θ sin θ − 6 cos2 θ sin2 θ − 4i cos θ sin3 θ + sin4 θ

Taking real parts gives cos(4θ) = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

Taking imaginary parts gives sin(4θ) = 4 cos3 θ sin θ − 4 cos θ sin3 θ

Alternative derivation of last identities. Applying the 2θ identities to 2θ itself, we have

cos(4θ) = cos
(
2(2θ)

)
= cos2(2θ)− sin2(2θ) =

(
cos2(θ)− sin2(θ)

)2 − (
2 cos θ sin θ

)2
= cos4 θ − 2 cos2 θ sin2 θ + sin4 θ − 4 cos2 θ sin2 θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

and sin(4θ) = sin
(
2(2θ)

)
= 2 cos(2θ) sin(2θ) = 2

(
cos2(θ)− sin2(θ)

)
·
(
2 cos θ sin θ

)
= 4 cos3 θ sin θ − 4 cos θ sin3 θ
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