Homework #7

Due Monday, September 30 in Gradescope by 11:59 pm ET

- WATCH Video 8: Proof of the Chain Rule
- READ Sections II.4 and II.5 of Gamelin, up to the halfway point of page 55
- READ The discussion below about Jacobians, which is sort of from Math 211
- WRITE AND SUBMIT solutions to the problems in this handout

Definition. Let $R, S \subseteq \mathbb{R}^2$ be open sets in the plane, and let $T : R \to S$ given by $T(x, y) =$ $(g(x, y), h(x, y))$. Suppose that both g and h are differentiable on T. The **Jacobian** of T at any point $(x, y) \in R$ is the 2×2 matrix $J_T =$ $\begin{bmatrix} g_x & g_y \end{bmatrix}$ h_x h_y 1 = $\int g_x(x, y)$ $g_y(x, y)$ $h_x(x, y)$ $h_y(x, y)$ 1 .

Theorem (Multivariable Change-of-Variables Formula).

Let $R, S \subseteq \mathbb{R}^2$ be open sets, and let $T : R \to S$ given by $T(x, y) = (g(x, y), h(x, y))$ be continuously differentiable. (I.e., all four partial derivatives g_x , g_y , h_x , h_y are continuous on R.) Suppose further that T is one-to-one and onto. Let $F: R \to \mathbb{R}$ be continuous. Then

$$
\iint_S F(u, v) du dv = \iint_R F(T(x, y)) |\det(J_T)| dx dy.
$$

(Note: that's the absolute value of the determinant of the Jacobian, i.e. $|g_xh_y-g_yh_x|$, appearing in the second integral.)

Theorem (The Inverse Function Theorem).

Let $R \subseteq \mathbb{R}^2$ be an open set in the plane, and let $T : R \to \mathbb{R}^2$ be a continuously differentiable function given by $T(x,y) = (g(x,y), h(x,y))$. Let $(x_0, y_0) \in R$ be a point such that $\det(J_T(x_0, y_0)) \neq 0$. [That is, $J_T(x_0, y_0)$ is an invertible matrix.]

Then there is some $\varepsilon > 0$ such that:

- the open disk $U = D((x_0, y_0), \varepsilon)$ is contained in R,
- T is one-to-one on U ,
- the set $V = T(U) \subseteq \mathbb{R}^2$ is also open,
- the function $T^{-1}: V \to U$ is continuously differentiable, and
- the Jacobian $J_{T^{-1}}$ of T^{-1} satisfies $J_{T^{-1}}(T(x,y)) = [J_T(x,y)]^{-1}$ for all $(x,y) \in U$.

Note that the second bulleted conclusion, together with the definition of V as $T(U)$, means that $T: U \to V$ is one-to-one and onto. Also note that the final bullet is the main conclusion, and it says that the Jacobian of the inverse function T^{-1} is the (matrix) inverse of the Jacobian of the original function T . That formula can be equivalently written as: $J_{T^{-1}}(u,v) = [J_T(T^{-1}(u,v))]^{-1}$ for all $(u,v) \in V$.

Next, complete the HW problems found on the next page

Assigned Problems for HW 7

Problem 1. II.4, #2. Let $a \in \mathbb{C} \setminus \{0\}$ be a nonzero complex number, and let $f(z)$ be an analytic branch of z^a . Prove that $f'(z) = af(z)/z$.

Problem 2. II.4, #7. Let $D \subseteq \mathbb{C}$ be a bounded domain, and let f be a bounded analytic function on D. Suppose also that f is one-to-one on D. Prove that

$$
\text{Area}\left(f(D)\right) = \iint_D \left|f'(z)\right|^2 dx \, dy.
$$

[Hint: Use the Multivariable Change-of-Variables Formula and facts from Section II.4.]

Problem 3. II.4, #9. Let $D = D(0,1)$ be the open unit disk $\{z \in \mathbb{C} : |z| < 1\}$, and let $f(z) = z^2$. Compute \int D $\big|f'(z)\big|$ $2² dx dy$. Interpret the answer in terms of areas; that is, explain how the value you get actually agrees with the previous problem.

Problem 4. II.5, $\#2$. Let $D \subseteq \mathbb{C}$ be a domain, and let $u, v : D \to \mathbb{R}$ be harmonic functions. Suppose that v is a harmonic conjugate for u. Prove that $-u$ is a harmonic conjugate for v.

Problem 5. II.5, $\#3(a,b)$, slight variant. Define $u(z) = \begin{cases} \text{Im}(1/z^2) & \text{for } z \in \mathbb{C} \setminus \{0\}, \\ 0 & \text{otherwise.} \end{cases}$ 0 for $z = 0$.

Prove that all four of $\frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x}$, $\partial^2 u$ $\frac{\partial}{\partial x^2}$ ∂u $\frac{\partial u}{\partial y}$, $\partial^2 u$ ∂y^2 exist at *all* points of $\mathbb C$ (viewed as $\mathbb R^2$), including at the point $(0,0)$. Then verify that u satisfies Laplace's equation on \mathbb{R}^2 . That is, prove that $\partial^2 u$ $\frac{\partial}{\partial x^2}$ + $\partial^2 u$ ∂y^2 $= 0$ everywhere on \mathbb{R}^2 .

[Note: Most of the work required here is about proving it at $(0,0)$. On $\mathbb{C} \setminus \{0\}$, you can compute the partial derivatives by hand if you really want to, but it's much faster to invoke facts about analytic functions.]

Problem 6. II.5, #3(c,d), slight variant. With u as in the previous problem, prove that $\frac{\partial^2 u}{\partial x^2}$ ∂x∂y does not exist at $(0, 0)$. Conclude that u is not harmonic on the whole plane, even though we just saw that it satisfies Laplace's equation on the whole plane.

Optional Challenges:

A: II.4, #5: Use the formula $\tan^{-1} z =$ 1 $2i$ $\log\left(\frac{1+iz}{1-iz}\right)$ to find the derivative first of the principal branch (using Log) and then of any branch of $tan^{-1}(z)$. **B**: II.4, #5: Find the derivative(s) of any branch $g(z)$ of $\cos^{-1}(z) = -i \log |z|$ √ $z^1 - 1$.