Math 345, Fall 2024

Homework #6

Due Thursday, September 26 in Gradescope by 11:59 pm ET

- WATCH Video 7: Compact Sets
- **READ** Sections II.2 and II.3 of Gamelin
- WRITE AND SUBMIT solutions to the problems in this handout

Problem 1. II.1, #16, slight variant: Prove that

- (a) the slit plane $\mathbb{C} \setminus (-\infty, 0]$ is star-shaped, but
- (b) the punctured plane $\mathbb{C} \setminus \{0\}$ is *not* star-shaped.

Problem 2. II.2, #2. For any $z \in \mathbb{C} \setminus \{1\}$ and any integer $n \ge 1$, prove that

$$1 + 2z + 3z^{2} + \dots + nz^{n-1} = \frac{1 - z^{n}}{(1 - z)^{2}} - \frac{nz^{n}}{1 - z}.$$

Problem 3. II.2, #3. Prove (from the definition) that the functions Re(z) and Im(z) are not differentiable at any point.

Problem 4. II.3, #2. Prove that the functions $u = \sin x \sinh y$ and $v = \cos x \cosh y$ satisfy the Cauchy-Riemann equations. Then find a function f(z) (with a simple formula in terms of z) so that f = u + iv. (And of course, prove/verify that this formula holds.)

Problem 5. II.3, #3. Let $D \subseteq \mathbb{C}$ be a domain and let $f : D \to \mathbb{C}$. Suppose that both f(z) and its complex conjugate $\overline{f}(z)$ are analytic on D. Prove that f is constant on D.

Optional Challenges:

A: II.1, #19 (a certain proof of the Fundamental Theorem of Algebra)

B: II.2, #6: Prove that the function $H(z) = \int_0^1 \frac{h(t)}{t-z} dt$ (from one of the HW4 challenges) is analytic on the domain $D = \mathbb{C} \setminus [0, 1]$. Compute its derivative.