Homework #19 Due Friday, December 6 in Gradescope by 11:59 pm ET

- WATCH Video 24: The Casorati-Weierstrass Theorem
- **READ** Sections VII.1 and VII.2 of Gamelin
- WRITE AND SUBMIT solutions to the problems in this handout

Problem 1. VII.1, #2(a). Calculate the residue of $f(z) = e^{1/z}$ at the isolated singularity at z = 0.

Problem 2. VII.1, #3(a,b). Use the Residue Theorem to evaluate the following integrals:

(a)
$$\oint_{|z|=1} \frac{\sin z}{z^2} dz$$
 (b) $\oint_{|z|=2} \frac{e^z}{z^2 - 1} dz$

Problem 3. VII.2 #2. Use residue theory to show that for any real constant a > 0, we have

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)^2} = \frac{\pi}{2a^3}.$$

Problem 4. VII.2 #7. Use residue theory to show that for any real constant a > 0, we have

$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{x^4 + 1} \, dx = \frac{\pi}{\sqrt{2}} e^{-a/\sqrt{2}} \bigg(\cos\frac{a}{\sqrt{2}} + \sin\frac{a}{\sqrt{2}} \bigg).$$

Optional Challenge: VII.2, #10. For $a, b \in \mathbb{R}$ with b > 0, show that

$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{x^2 + b^2} \, dx = \frac{\pi e^{-|a|b}}{b}$$