Homework #18 Due Tuesday, December 3 in Gradescope by 11:59 pm ET

- WATCH Video 22: Laurent Expansion
- WATCH Video 23: Isolated Singularities
- **READ** Sections VI.4 and VII.1 of Gamelin
- WRITE AND SUBMIT solutions to the problems in this handout

Problem 1. VI.4, #1(a,d). Find the partial fractions decompositions of the following functions.

(a)
$$\frac{1}{z^2 - z}$$
 (d) $\frac{1}{(z^2 + 1)^2}$

Problem 2. VI.4, #2(a). Use the division algorithm to (help) obtain the partial fractions decomposition of the function $\frac{z^3 + 1}{z^2 + 1}$

Problem 3. VII.1 #1(a,b,c). Evaluate the following residues.

(a)
$$\operatorname{Res}\left[\frac{1}{z^2+4}, 2i\right]$$
 (b) $\operatorname{Res}\left[\frac{1}{z^2+4}, -2i\right]$ (c) $\operatorname{Res}\left[\frac{1}{z^5-1}, 1\right]$

Problem 4. VII.1 #1(g,h). Evaluate the following residues.

(g)
$$\operatorname{Res}\left[\frac{z}{\operatorname{Log} z}, 1\right]$$
 (h) $\operatorname{Res}\left[\frac{e^z}{z^5}, 0\right]$

Optional Challenge: VI.4, #3. Let V be the complex vector space of functions that are analytic on the Riemann sphere $\overline{\mathbb{C}}$ except possibly at the points 0 and *i*, where they have poles of order at most 2. What is the dimension of V? Write down an explicit vector space basis of V.

[*Note*: A complex vector space is a vector space like \mathbb{C}^n where the scalar multiplication is by elements of \mathbb{C} rather than by elements of \mathbb{R} .]