Homework #12 Due Monday, October 28 in Gradescope by 11:59 pm ET

- WATCH Video 13: Existence of a Primitive
- **WATCH** Video 14: Proof of the Cauchy Differentiation Formula
- **READ** Sections IV.2, IV.3, and IV.4 of Gamelin
- WRITE AND SUBMIT solutions to the problems in this handout

Problem 1. IV.2, #1(a,b), variant. Let γ be any piecewise-smooth path in the plane from $-\pi i$ to πi . Use primitives to evaluate the following integrals.

(a)
$$\int_{\gamma} z^4 dz$$
 (b) $\int_{\gamma} e^z dz$

Problem 2. IV.2, #2. Let γ_1 be any piecewise-smooth path in the right half-plane from $-\pi i$ to πi , and let γ_2 be any piecewise-smooth path in the left half-plane from $-\pi i$ to πi . For each path γ_j , choose an explicit primitive of 1/z (on the right half-plane, and on the left half-plane, respectively). Use this primitive to evaluate $\int_{\gamma_j} \frac{1}{z} dz$ for j = 1, 2.

Problem 3. IV.3, #4. Use Cauchy's Theorem to prove the key step of the Fundamental Theorem of Algebra — any polynomial with no roots in \mathbb{C} must be constant — using the following strategy. Let P(z) be a polynomial with coefficients in \mathbb{C} that is not constant. (That is, $P(z) \in \mathbb{C}[z]$ with deg $(P) \geq 1$.) Write P(z) = P(0) + zQ(z) for an appropriate polynomial Q(z), and consider the integral

$$\oint_{|z|=R} \frac{1}{z} \, dz = \oint_{|z|=R} \frac{P(z)}{zP(z)} \, dz = \oint_{|z|=R} \frac{P(0) + zQ(z)}{zP(z)} \, dz = \oint_{|z|=R} \frac{P(0)}{zP(z)} \, dz + \oint_{|z|=R} \frac{Q(z)}{P(z)} \, dz.$$

On the one hand, we can compute the integral on the left side. On the other hand, if P has no roots, you can take the limit as $R \to \infty$ and use the *ML*-estimate and Cauchy's Theorem to bound the integrals on the right side. So if P has no roots, deduce a contradiction.

Problem 4. IV.4, #1(a,b). Evaluate these integrals using the Cauchy Integral Formula and/or Cauchy Differentiation Formula and/or Cauchy's Theorem.

(a)
$$\oint_{|z|=2} \frac{z^n}{z-1} dz$$
 for each integer $n \ge 0$ (b) $\oint_{|z|=1} \frac{z^n}{z-2} dz$ for each integer $n \ge 0$

Problem 5. IV.4, #1(e,g). Evaluate these integrals using the Cauchy Integral Formula and/or Cauchy Differentiation Formula and/or Cauchy's Theorem.

(e)
$$\oint_{|z|=1} \frac{e^z}{z^m} dz$$
 for each integer $m \in \mathbb{Z}$ (g) $\oint_{|z|=1} \frac{dz}{z^2(z^2-4)e^z}$

Optional Challenge: IV.3, #6: Let R > 0, and suppose $f : \overline{D}(0, R) \to \mathbb{C}$ is continuous on the closed disk $\{|z| \le R\} = \overline{D}(0, R)$ and analytic on the open disk $\{|z| < R\} = D(0, R)$. Prove that $\oint_{|z|=R} f(z) dz = 0$.

[Suggestion: Approximate f uniformly by $f_r(z) = f(rz)$ for 0 < r < 1 and let $r \to 1^-$.]