Professor Rob Benedetto

Math 345, Fall 2024

Homework #10

Due Thursday, October 10 in Gradescope by 11:59 pm ET

- **WATCH** Video 11: Complex Line Integrals
- **READ** Sections III.1 and III.2 of Gamelin
- WRITE AND SUBMIT solutions to the problems in this handout

Problem 1. III.1, #1(a,c). Compute $\int_{\gamma} y^2 dx + x^2 dy$ along each of the following two paths γ

from (0,0) to (2,4):

- γ is the arc of the parabola $y = x^2$ from (0,0) to (2,4).
- γ is the vertical line segment (0,0) to (0,4), followed by the horizontal line segment from (0, 4) to (2, 4).

Problem 2. III.1, #4. Fix R > 0, and let γ be the semicircle in the upper half-plane from R to -R. Evaluate $\int_{\infty} y \, dx$ in two ways: first directly, and then using Green's Theorem.

[Note: The path γ is not a closed curve. So to apply Green's Theorem, you'll need to extend it to a closed curve, and separately work out the integral along the extra piece. I'd suggest using the line segment (along the real axis) from -R to R.]

Problem 3. III.1, #5, variant. Let D be a bounded region in the plane with piecewise smooth boundary curve ∂D . Use Green's Theorem to prove that $\int_{\partial D} x \, dy$ is the area of D.

Problem 4. III.2, #1(b,c,d). For each of the following differential forms ω , determine whether ω is independent of path or not.

If yes, find a function h such that $dh = \omega$. If no, find a closed path γ around the origin such that $\int_{\gamma} \omega \neq 0.$

(b) $\omega = x^2 dx + y^5 dy$ (c) $\omega = y dx + x dy$ (d) $\omega = y dx - x dy$

Problem 5. III.2, #3. Fix b > a > 0, and let D be the annulus a < |z| < b. Let $P, Q : D \to \mathbb{R}$ be smooth functions such that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Use Green's Theorem to prove that the value of $\oint_{|z|=r} P \, dx + Q \, dy \text{ is independent of the radius } r, \text{ for } a < r < b.$

Optional Challenge:

III.1, #7: Show that both sides of the equation in Green's Theorem are invariant under coordinate change.

Note: See the statement of this problem on page 75 for more details, including the relevant change-of-coordinates formulas both for double integrals and for line integrals.]