
Math 345, Fall 2024 Professor Rob Benedetto

Solutions to Midterm Exam 2

1. (12 points). State Morera’s Theorem.

Answer. Let D ⊆ C be a domain, and let f : D → C be continuous. Suppose that for every closed

rectangle R ⊆ D with sides parallel to the axis, we have

∫
∂R

f(z) dz = 0. Then f is analytic on D.

2. (15 points). Compute the integral

∫
|z|=2024

sin z

z4
dz.

Solution. Let f(z) = sin z. Then f ′(z) = cos z, so f ′′(z) = − sin z, so f ′′′(z) = − cos z. Since z = 0
lies inside the circle |z| = 2024, by CDF, we have∫
|z|=2024

sin z

z4
dz =

2πi

3!
· f ′′′(0) =

2πi

6
· (− cos 0) = −πi

3

3. (27 points). Compute the integral

∫
|z+2|=2

e4z

(z2 − 1)(z + 3)
dz.

Solution. Let f(z) be the integrand. Note that two of the singularities of f , at z = −1 and z = −3,
are inside the contour |z + 2| = 2, but the third, at z = 1, is outside.
Define D = {z : |z + 2| < 2 and |z + 1| > 1

2 and |z + 3| > 1
2}, like this:

1−1−2−3

Define D1 = D(−3, 12) and D2 = D(−3, 12). By Cauchy’s Theorem applied to D (since f is analytic
on D), we have∫
|z+2|=2

f(z) dz =

∫
∂D1

f(z) dz +

∫
∂D2

f(z) dz =

∫
|z+3|= 1

2

f(z) dz +

∫
|z+1|= 1

2

f(z) dz

Write f(z) =
g(z)

z + 3
and f(z) =

h(z)

z + 1
where g(z) =

e4z

z2 − 1
and h(z) =

e4z

(z − 1)(z + 3)
.

By CIF,

∫
∂D1

g(z)

z + 3
= 2πig(−3) = 2πi

e−12

9− 1
=

πi

4e12

and

∫
∂D2

h(z)

z + 1
= 2πih(−1) = 2πi

e−4

(−2)(2)
=

−πi

2e4

Summing, therefore, the original integral is
πi

4e12
− πi

2e4

4. (26 points) Let f(z) =
e(2z

3)

1 + sin(z2)
.



4a. Compute the power series of f(z) centered at z = 0,

up to and including the z6 term only.

4b. What is the radius of convergence of the power series in part (a), and why?

Solution. (a): We have e(2z
3) = 1 + 2z3 +

1

2
(2z3)2 +O(z7) = 1 + 2z3 + 2z6 +O(z7) and

1 + sin(z2) = 1 +

(
z2 − 1

3!
(z2)3 +O(z7)

)
= 1 + z2 − 1

6
z6 +O(z7) = 1−

(
− z2 +

1

6
z6
)
+O(z7).

Thus,
1

1 + sin(z2)
= 1 +

(
− z2 +

1

6
z6
)
+

(
− z2 +

1

6
z6
)2

+

(
− z2 +

1

6
z6
)3

+O(z7)

= 1− z2 +
1

6
z6 + z4 − z6 +O(z7) = 1− z2 + z4 − 5

6
z6 +O(z7)

So f(z) =

(
1 + 2z3 + 2z6 +O(z7)

)(
1− z2 + z4 − 5

6
z6 +O(z7)

)
=

(
1− z2 + z4 − 5

6
z6
)
+
(
2z3 − 2z5

)
+
(
2z6) +O(z7) = 1− z2 + 2z3 + z4 − 2z5 +

7

6
z6 +O(z7)

(b): We have sin z ̸= −1 for |z| < π/2, so 1 + sin(z2) ̸= 0 for |z| <
√
π/2. Therefore, f is analytic on

D(0,
√

π/2).

On the other hand, the denominator of f(z) is zero at z = i
√

π/2 whereas the numerator is not. Thus,
f blows up at z = i

√
π/2, and hence f has no analytic extension to any disk D(0, r) for r >

√
π/2.

Therefore, by a theorem [one of the corollaries of the Taylor series theorem, on page 146, by the way],

the radius of convergence of the power series is

√
π

2

5. (20 points.) Let D = {z ∈ C : |z| ≤ 3}. (I.e., the closed disk of radius 3 centered at the origin.)

Prove that the series
∞∑
k=1

k + zk

(z + 8)k
converges uniformly on D.

Solution. For any z ∈ D, we have |z + 8| ≥ 8 − |z| ≥ 5. In addition, for any such z and any k ≥ 1,
we have ∣∣k + zk

∣∣ ≤ k + |z|k ≤ 3k + 3k = 2 · 3k.

Thus, for any such z and k, we have
∣∣∣ k + zk

(z + 8)k

∣∣∣ ≤ 2 · 3
k

5k
.

In addition,
∑
k≥1

2 · 3
k

5k
is a geometric series with ratio r = 3/5, which satisfies |r| < 1; hence, this last

series converges by the Geometric Series Test. Therefore, by the M -test, the original series converges
uniformly on D. QED

OPTIONAL BONUS. (2 points.) Let f be an entire function, and suppose there is a constant
M ≥ 0 such that |f(z)| ≤ M |z|2 for all z ∈ C. Prove that there is a complex number a ∈ C such that
f(z) = az2.

Proof. We first claim that f ′′′(z) = 0 for all z ∈ C. Given any z ∈ C, then for any R > |z|, the point
z lies inside the circle |w| = R, and hence the Cauchy Differentiation Formula gives

f ′′′(z) =
3!

2πi

∫
|w|=R

f(w)

(w − z)4
dw.



For any w ∈ C with |w| = R, we have |w − z| ≥ |w| − |z| = R− |z|, and hence∣∣∣ f(w)

(w − z)4

∣∣∣ ≤ MR2

(R− |z|)4
.

Since the circle has path length 2πR, the ML-estimate yields

0 ≤ |f ′′′(z)| ≤ 3

π
· MR2

(R− |z|)4
· 2πR =

6MR3

(R− |z|)4
=

6M

R(1− |z|/R)4
.

This is true for all R > |z|. The limit of the expression on the left is 0 as R → ∞. Thus, 0 ≤ |f ′′′(z)|
is smaller than every positive real number, and hence f ′′′(z) = 0, proving our claim.
Since (f ′′)′ = 0, we have f ′′(z) = C2 by the uniqueness of primitives up to adding constants. Taking
a second antiderivative, we similarly have f ′(z) = C2z + C1. Antidifferentiating again, we have
f(z) = C2

2 z2 + C1z + C0.
Using z = 0 in our hypothesis gives |f(0)| ≤ 0, and hence C0 = f(0) = 0. Thus, f(z) = az2 + bz for
some a, b ∈ C. Note that f ′(0) = b.
However, for any ε > 0, the Cauchy differentiation formula gives

f ′(0) =
1!

2πi

∫
|w|=ε

f(w)

w2
dw.

For any w ∈ C with |w| = ε, we have ∣∣∣f(w)
w2

∣∣∣ ≤ Mε2

ε2
= M.

Since the circle has path length 2πε, the ML-estimate yields

0 ≤ |f ′(0)| ≤ Mε.

This is true for all ε > 0. Thus, 0 ≤ |f ′(0)| is smaller than every positive real number, and hence
b = f ′(0) = 0.
That is, f(z) = az2. QED


