
Math 345, Fall 2024 Professor Rob Benedetto

Solutions to (Take-Home) Midterm Exam 1

1. (10 points) Find all complex roots of z7 + 8iz = 0.

Solution. The equation is z(z6 + 8i) = 0, so the roots are 0 and the sixth roots of −8i.
We have | − 8i| = 8 and Arg(8i) = −π/2. Thus, 8i = 8e(2πi)n−iπ/2 for any n ∈ Z. Its sixth roots are
therefore

√
2eiπ(n/3−1/12) for n = 0, 1, . . . , 5. Thus, the roots of the original equation are:

z = 0,
√
2e−iπ/12,

√
2eiπ/4,

√
2e7iπ/12,

√
2e11iπ/12,

√
2e5iπ/4,

√
2e19iπ/12

2. (12 points) Sketch the region

D =
{
z ∈ C :

π

6
< Arg z <

π

3
, and 1 < |z| < 2

}
.

Then compute and sketch f(D), where f(z) = iz3 − 7.

Solution. Here is the region D:

x

y

1

i

Applying g(z) = z3 cubes the moduli and triples the arguments, so that

g(D) =
{
z ∈ C :

π

2
< Arg z < π, and 1 < |z| < 8

}
,

which looks like this:

x

y

−1−8

8i

i

Multiplying by i rotates 90 degrees counterclockwise, giving

ig(D) =
{
z ∈ C : π < arg z <

3π

2
, and 1 < |z| < 8

}
.

[Note that I had to switch to arg instead of Arg, since the region now crosses the negative real axis.]
That looks like this:

x

y

−1−8

−8i

−i



Finally, adding −7 translates horizontally left by 7. Thus, we have

f(D) =
{
w ∈ C : π < arg(w + 7) <

3π

2
, and 1 < |w + 7| < 8

}
which looks like this (not including the boundary, of course):

x

y

−8−15

−8i

−i

Note: The problem did not specifically ask for the two intermediate pictures, but I found it easier to
solve the problem by drawing those pictures along the way.

3. (14 points) Let u(x, y) = x4 + y4 + a(x2y2 − 2x+ 4y) + eby sin(5x).

(a) Find constants a, b ∈ R such that u is harmonic on C.
(b) For those choices of a, b, find a harmonic conjugate v for u on C.
(c) For the same choice of a, b, and v, express f = u+ iv in terms of z(= x+ iy) only.

Solutions. (a): We compute ux = 4x3 + 2axy2 − 2a+ 5eby cos(5x), and so
uxx = 12x2 + 2ay2 − 25eby sin(bx).

Meanwhile, uy = 4y3 + 2ax2y + 4a+ beby sin(5x), and uyy = 12y2 + 2ax2 + b2eby sin(5x).

Thus, ∆u = uxx + uyy = (12 + 2a)(x2 + y2) + (b2 − 25)eby sin(5x).
Choosing a = −6 and b = 5, then, yields ∆u = 0. [Note: b = −5 also works. But I implicitly only
asked you to find one set of such constants. Your choice. If you did more than one, that’s fine, of
course.]
In addition, all partial derivatives of u are defined and continuous, since it is made of sums and
products of polynomials, exponentials, and trig functions.
Thus, with a = −6 and b = 5 we have u = x4 + y4 − 6x2y2 + 12x− 24y + e5y sin(5x) is harmonic.

(b) Solving vy = ux gives vy = 4x3 − 12xy2 + 12 + 5e5y cos(5x), so
v = 4x3y − 4xy3 + 12y + e5y cos(5x) + g(x), where g(x) is an unknown function.

Thus, vx = 12x2y − 4y3 − 5e5y sin(5x) + g′(x). Solving vx = −uy yields g′(x) = 24, so we may choose
g(x) = 24x. [We may add any constant, but I choose to add 0.]

Hence, v = 4x3y − 4xy3 + 12y + 24x+ e5y cos(5x) is a harmonic conjugate for u, since vy = ux and
vx = −uy.

(c) We have
u+ iv = x4 + 4ix3y − 6x2y2 − 4ixy3 + y4 + 12x+ 12iy + 24ix− 24y + e5y(sin(5x) + i cos(5x)).

That is, u+ iv = (x+ iy)4 + (12 + 24i)(x+ iy) + ie5y(cos(5x)− i sin(5x))

= z4 + (12 + 24i)z + ie5(y−ix) = z4 + (12 + 24i)z + ie−5iz
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4. (14 points) Let γ1 be the quarter-circle path (along |z| = 2) from 2 to 2i, and let γ2 be the
straight-line segment from 2i to −2. Let f(z) = 3z − (z)2. Compute∫

γ1

f(z) dz +

∫
γ2

f(z) dz.

Solution. Parametrize γ1 by z = 2eit for 0 ≤ t ≤ π/2, so that z̄ = 2e−it and dz = 2ieit dt. Thus,∫
γ1

f(z) dz =

∫ π/2

0

[
6eit − (2e−it)2

]
2ieit dt = 4

∫ π/2

0
3ie2it − 2ie−it dt = 4

(
3

2
e2it + 2e−it

)∣∣∣∣π/2
0

= 4

[(
3

2
eiπ + 2e−iπ/2

)
−
(
3

2
+ 2

)]
= 4

(
− 3

2
− 2i− 7

2

)
= −20− 8i

Parametrize γ2 by z = 2i − (1 + i)t for 0 ≤ t ≤ 2, so that z̄ = −2i − (1 − i)t and dz = −(1 + i) dt.
Thus,∫
γ2

f(z) dz =

∫ 2

0

[
3
(
2i− (1 + i)t

)
−
(
− 2i− (1− i)t

)2]
(−1− i) dt

= (−1− i)

∫ 2

0

[
6i− (3 + 3i)t−

(
− 4 + (4 + 4i)t− 2it2

)]
dt

= (−1− i)

∫ 2

0

[
(4 + 6i)− (7 + 7i)t+ 2it2

]
dt = (−1− i)

[
(4 + 6i)t− (7 + 7i)

2
t2 +

2i

3
t3
]∣∣∣∣2

0

= (−1− i)

[(
(8 + 12i)− (14 + 14i) +

16

3
i

)
−
(
0− 0 + 0

)]
= (−1− i)

(
− 6 +

10

3
i

)
= 6− 10

3
i+ 6i+

10

3
=

28

3
+

8

3
i.

Therefore, the sum of the two integrals is∫
γ1

f(z) dz +

∫
γ2

f(z) dz = −20− 8i+
28

3
+

8

3
i = −32

3
− 16

3
i

5. (15 points) Let f(z) =
z3eiz

z5 + 10
, and for any real number R > 2, let γR be the path from R to −R

along the upper half of the circle |z| = R. Use the ML-estimate to prove that

lim
R→∞

∫
γR

f(z) dz = 0.

Proof. Given R > 2 and z ∈ C with Im z ≥ 0 and |z| = R, note that |z5+10| ≥ |z5| − |10| = R5− 10.
In addition, writing z = x + iy, we have

∣∣eiz∣∣ =
∣∣eixe−y

∣∣ = e−y ≤ 1, since y ≥ 0. Furthermore,
|z3| = R3.
Combining these bounds, then, we have

|f(z)| = |z3| · |eiz|
|z5 + 10|

≤ R3

R5 − 10

for all z on the path γR.
Meanwhile, the length of the path γR is πR. Hence, by the ML-estimate,

0 ≤
∣∣∣ ∫

γR

f(z) dz
∣∣∣ ≤ R3

R5 − 10
· πR =

πR4

R5 − 10
=

πR−1

1− 10R−5
. (1)

The expression on the right side of inequality (1) goes to 0 as R → ∞. Therefore, given any ε > 0,

there is some N > 0 so that for all R > N , we have

∣∣∣∣ πR−1

1− 10R−5

∣∣∣∣ < ε.
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Thus, for all R > N , we have
∣∣∣ ∫

γR

f(z) dz
∣∣∣ ≤ ∣∣∣∣ πR−1

1− 10R−5

∣∣∣∣ < ε, which proves the desired limit. QED

6. (15 points)

6a. Fix c ∈ C with 0 < |c| < 1. Let f(z) =
z − c

c̄z − 1
.

Prove that f maps the open unit disk D(0, 1) one-to-one and onto itself.

6b. For any a, b ∈ D(0, 1), prove that there is a linear fractional transformation g(z)
such that g maps D(0, 1) one-to-one and onto itself, with g(a) = b.

Proof. (a), Method 1: First we show that f maps D(0, 1) into itself. Given z ∈ D(0, 1), we have

|z − c|2 = (z − c)(z̄ − c̄) = zz̄ − cz̄ − c̄z + cc̄ and

|c̄z − 1|2 = (c̄z − 1)(cz̄ − 1) = cc̄zz̄ − cz̄ − c̄z + 1.

Thus,

|c̄z − 1|2 − |z − c|2 = cc̄zz̄ − zz̄ − cc̄+ 1 = |c|2|z|2 − |z|2 − |c|2 + 1 =
(
1− |c|2

)(
1− |z|2

)
> 0,

and hence |z − c| < |c̄z − 1|. That is, |f(z)| < 1, so f(z) ∈ D(0, 1), as desired.
Next, since f is an FLT, it has an inverse function, and the FLT inverse formula gives

f−1(z) =
−z + c

−c̄z + 1
=

z − c

c̄z − 1
= f(z).

Thus, f is one-to-one (since it has an inverse). Moreover, given any w ∈ D(0, 1), we can set z = f(w),
and we have z ∈ D(0, 1) by the first thing we proved; so f(z) = f(f(w)) = w. Hence, f also maps
D(0, 1) onto itself. QED(a)

(a), Method 2: The points 1, −1, i all lie on the circle |z| = 1. We have

|f(1)| =
∣∣∣∣1− c

c− 1

∣∣∣∣ = |c− 1|∣∣c− 1
∣∣ = 1 and |f(−1)| =

∣∣∣∣−1− c

−c− 1

∣∣∣∣ = |c+ 1|∣∣c+ 1
∣∣ = 1,

since |w| = |w| for all w ∈ C. In addition, we have

−i(ci− 1) =
(
c+ i

)
= c− i, and hence

∣∣ci− 1
∣∣ = |c− i|,

so that

|f(i)| =
∣∣∣∣ i− c

ci− 1

∣∣∣∣ = |c− i|∣∣ci− 1
∣∣ = 1.

Thus, since all three of f(1), f(−1), f(i) lie on the unit circle |w| = 1, and since FLTs map circles
and lines to circles and lines, it follows that f maps the unit circle to the unit circle.

In addition, we have f(0) =
−c

−1
= c, which lies in the open unit disk, since |c| < 1. Thus, since f

maps the unit circle to itself and maps (at least one) point inside the disk into the disk, and because
f is continuous and bijective on the whole Riemann sphere, it follows that f maps the open unit disk
bijectively onto itself. QED (a)

(b): Given a, b ∈ D(0, 1), let fa(z) =
z − a

āz − 1
, and fb(z) =

z − b

b̄z − 1
. Or, if a = 0 and/or b = 0, define

fa(z) = z and/or fb(z) = 0, respectively. [Alternatively for the a = 0 and b = 0 cases, part (a) doesn’t
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actually use the assumption c ̸= 0, so one can just use fa and fb as defined in the first sentence of this
part.] Then by part (a), both fa and fb map D(0, 1) one-to-one and onto itself. Moreover, fa(a) = 0,
and fb(b) = 0.
Thus, defining g = f−1

b ◦fa, we see that g is a linear fractional transformation with g(a) = b. Moreover,
because the composition of one-to-one and onto functions is one-to-one and onto, we also see that g
maps D(0, 1) one-to-one and onto itself. QED

7. (20 points) Let f : [3, 8] → C be a continuous function, and let D = C ∖ [3, 8]. For all z ∈ D,
define

g(z) =

∫ 8

3

f(t)

t− z
dt.

Of course, g is defined on D because for any z ∈ D, the function f(t)/(t− z) is a continuous function
of t ∈ [3, 8], and so the integral makes sense.

Prove that g is (complex) differentiable on D. (In fact, g is analytic on D, but I am only asking you
to show it’s differentiable.)

Proof. By definition, g′(z) = lim
h→0

g(z + h)− g(z)

h
= lim

h→0

1

h

(∫ 8

3

f(t)

t− z − h
− f(t)

t− z
dt
)

= lim
h→0

1

h

∫ 8

3

hf(t)

(t− z − h)(t− z)
dt = lim

h→0

∫ 8

3

f(t)

(t− z − h)(t− z)
dt.

We claim that g′(z) =

∫ 8

3

f(t)

(t− z)2
dt. [We guessed this by switching the limit and integral sign.] That

is, we claim that

lim
h→0

∫ 8

3

f(t)

(t− z − h)(t− z)
dt =

∫ 8

3

f(t)

(t− z)2
dt.

For any fixed z ∈ C ∖ [3, 8], the integral

∫ 8

3

f(t)

(t− z)2
dt is indeed defined, because the integrand is

continuous in the variable t ∈ [3, 8]. So it suffices to show the claim.
To prove the claim, note that the absolute value of the difference between the thing we taking the
limit of, and our conjectured limit value, is∣∣∣∣ ∫ 8

3

f(t)

(t− z − h)(t− z)
− f(t)

(t− z)2
dt

∣∣∣∣ = ∣∣∣∣ ∫ 8

3

hf(t)

(t− z − h)(t− z)2
dt

∣∣∣∣.
We now prove the claim via an epsilon-delta proof, by bounding the above expression.
Given z ∈ D, since D is open, there exists r > 0 such that D(z, 2r) ⊆ D. We can assume in what
follows that |h| < r, since we are taking limh→0. In particular, |t− z| ≥ 2r and

|t− z − h| ≥ |t− z| − |h| > 2r − r = r for all t ∈ [3, 8].

The function |f(t)| is a real-valued continuous function on [3, 8] (since both f and the absolute value
function are continuous). Since [3, 8] is closed and bounded, and hence compact, |f(t)| has a maximum
value M ∈ R on [3, 8]; clearly M ≥ 0. Meanwhile, [3, 8] has length L = 5. By the ML-estimate, then,∣∣∣∣ ∫ 8

3

hf(t)

(t− z − h)(t− z)2
dt

∣∣∣∣ ≤ |h| ·M
2r · r2

· 5 = |h| · 5M
2r3

.

Given ε > 0, then, let δ = min

{
r,

2r3ε

5M + 1

}
> 0. [Recall we needed |h| < r above; hence the min.

And the +1 is to avoid dividing by 0.] For any h ∈ C with |h| < δ, the above bound shows that∣∣∣∣ ∫ 8

3

hf(t)

(t− z − h)(t− z)2
dt

∣∣∣∣ < 2r3ε

5M + 1
· 5M
2r3

< ε,
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proving the claim, and hence finishing the proof. QED

OPTIONAL BONUS. (2 points)
Let D = {z ∈ C : Im z > 0 and |z − 5i| > 3}, i.e., the open upper half-plane with the closed disk
D(5i, 3) removed.
For any real number 0 < r < 1, define Ur to be the annulus Ur = {z ∈ C : r < |z| < 1}.
Find a real number 0 < r < 1 and a function f : D → Ur that is analytic, one-to-one, and onto.

Answer/Proof. First, let’s find an FLT f1 taking the real line to the unit circle, with the upper
half-plane mapping to the interior of the disk. To do this, let’s map 0 to 1, 1 to i, and ∞ to −1, which
means that traversing R from left to right corresponds to traversing the circle counterclockwise, so
that in both cases the desired region (upper half-plane or disk) is on our left side, giving the desired
map. Writing

f1(z) =
a1z + b1
c1z + d1

,

we have b1 = d1, a1 + b1 = i(c1 + d1), and c1 = −a1. Choosing d1 = 1, this gives

f1(z) =
iz + 1

−iz + 1
.

[As a check, note that f1(i) = 0, so the upper half-plane does indeed map inside the unit circle, rather
than outside.]

Next, let’s figure out what the image f1(D) is. The image of the upper half-plane, as we said, is
the open unit disk D(0, 1). So what is the image of the inner boundary of D, the circle C given by
|z − 5i| = 3? There are various ways to do this (most obviously, choosing three points on the circle,
finding their images, and then figuring out what unique circle or line passes through those three image
points), but I’ll do the following somewhat sneakier way that involves less computation.

First, I claim that f1 maps the imaginary axis Ri to the real line R. [In that sentence, and throughout
this paragraph, when I say R, I really mean R ∪ {∞}.] This is because on the one hand f1(−i) = ∞,
which implies that f1(Ri) is a line (not a circle); on the other hand, since R and Ri meet at right angles,
so must their images. Since R and Ri meet at 0, and f1(0) = 1, the image f1(Ri) of the imaginary
axis must be the unique straight line passing through 1 and perpendicular to the unit circle. That is,
f1(Ri) = R, as claimed.

Second, the circle C given by |z−5i| = 3 meets Ri at right angles at the two points 2i and 8i. Thus, the
image f1(C) must be the unique circle or line that meets f1(Ri) = R at right angles at f1(i) = −1/3
and f1(8i) = −7/9. That is, f1(C) is the circle C ′ given by |z + 5/9| = 2/9.
[WARNING: note that the center of the circle C does not map to the center of the circle C ′. There
was never any claim that FLT’s behave that way. They map circles themselves to circles, and they
preserve the angles at which curves cross, but they generally do not preserve centers of circles.]

Thus, f1(D) = D(0, 1)∖D(−5/9, 2/9) is the region formed by removing the smaller (closed) disk from
the (open) unit disk. After all, f1 maps the upper half-plane to D(0, 1), and it maps the exterior of
D(5i, 3) to the exterior of D(−5/9, 2/9).

The problem facing us is that the two disks do not share the same center, and hence f1(D) is not an
annulus. So let’s try to find another FLT than maps the unit disk to itself BUT moves D(−5/9, 2/9)
to a disk D(0, r) centered at the origin. To do this, let’s use

f2(z) =
a2z + b2
c2z + d2

6



and, without yet specifying what r ∈ (0, 1) will be, try to get f2(−1) = −1, f2(1) = 1, f2(−7/9) = −r,
and f2(−1/3) = r. That is:

−a2 + b2 = c2 − d2

a2 + b2 = c2 + d2

−7a2 + 9b2 = 7rc2 − 9rd2

−a2 + 3b2 = −rc2 + 3rd2.

Solving the first two equations gives d2 = a2 and c2 = b2. Choosing b2 = 1, the last two equations
become

−7a2 + 9 = 7r − 9ra2

−a2 + 3 = −r + 3ra2.

The last equation gives r + 3 = (3r + 1)a2, so that a2 = (r + 3)/(3r + 1). Substituting this value into
the previous equation gives

−7(r + 3) + 9(3r + 1) = 7r(3r + 1)− 9r(r + 3), so 20r − 12 = 12r2 − 20r.

That is, 12r2 − 40r + 12 = 0, so that 3r2 − 10r + 3 = 0, which factors as (3r − 1)(r − 3).

Thus, r is either 3 or 1/3. But the choice r = 3 is not allowed, since we want r ∈ (0, 1). Therefore, we
use r = 1/3, giving

a2 =
1
3 + 3

1 + 1
=

5

3
, and hence f2(z) =

5
3z + 1

z + 5
3

=
5z + 3

3z + 5
.

Note that choosing c = −3/5 gives −f2(z) = (z− c)/(cz−1); therefore, by problem 6(a) on this exam,
−f2 maps the open unit disk D(0, 1) bijectively onto itself. Since w 7→ −w also maps the open unit
disk D(0, 1) bijectively onto itself, it follows that f2 also maps the open unit disk D(0, 1) bijectively
onto itself.

In addition, since f2 has real coefficients, it maps real numbers to real numbers, and hence it maps
the real line to itself. Since the circle C ′ (which, recall, is given by |z + 5/9| = 2/9) crosses R at right
angles at the points −7/9 and −1/3, it follows that f2(C

′) must be another circle crossing R at right
angles at the points f(−7/9) = −1/3 and f(−1/3) = 1/3. That is, f2(C

′) is the circle C ′′ centered at
0 of radius 1/3.

Recall that f1(D) is the set of points inside the circle C (given by |z| = 1) and outside the circle C ′.
Because 0 ∈ f1(D), and because f2(0) = 3/5 lies inside the unit disk but outside the circle C ′′, it
follows that f2(f1(D)) is the annulus inside C and outside C ′′.

That is, f2 ◦ f1 maps D into the annulus U1/3. So the map

f(z) = f2 ◦ f1(z) =
2iz + 8

−2iz + 8
=

iz + 4

−iz + 4

maps D bijectively and analytically onto Ur where r = 1/3.
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