
Math 345, Fall 2025 Professor Rob Benedetto

Path-Independence for Homotopic Paths

This handout presents a rigorous proof of the following theorem, which appears in Section III.2 of
Gamelin’s text, at the top of page 81:

Theorem. Let D ⊆ R2 be a domain, let A,B ∈ D, let γ0 and γ1 be paths from A to B in D, and let
P dx+Qdy be a (smooth) closed differential form in D. If γ0 is homotopic to γ1, then∫

γ0

P dx+Qdy =

∫
γ1

P dx+Qdy.

Recall the following definitions:

We say that P dx+Qdy is closed if:

P and Q are C1 (i.e., they have continuous first partial derivatives), and
∂P

∂y
=

∂Q

∂x
.

If γ0, γ1 : [a, b] → D are paths from A to B in D, we say that γ0 is homotopic to γ1 if there is a
continuous function T : [0, 1]× [a, b] → D such that

• T (0, t) = γ0(t) for all t ∈ [a, b],
• T (1, t) = γ1(t) for all t ∈ [a, b],
• T (s, a) = A for all s ∈ [0, 1], and
• T (s, b) = B for all s ∈ [0, 1].

Note that Gamelin writes γs(t) instead of T (s, t), to emphasize that intuitively, we think of T as a
continuously varying family of paths from A to B.
That is, for each s ∈ [0, 1], the function γs : [a, b] → D is a path from A to B in D, and γs is close to
γr whenever s is close to r.

Proof of Theorem. Define K = [0, 1]× [a, b], which is a closed rectangle. Then K is compact, since
it is a closed and bounded subset of R2. We will cover K by open disks as follows:

For each point (s, t) ∈ K, because T (s, t) ∈ D and D is open, there is some ε > 0 so that we have

D
(
T (s, t), ε

)
⊆ D. Since T is continuous, then, there is some δ′ > 0 such that

T
(
D
(
(s, t), δ′

)
∩K

)
⊆ D

(
T (s, t), ε

)
.

[That is, for every point (x, y) ∈ K with ∥(x, y)− (s, t)∥ < δ′, we have ∥T (x, y)− T (s, t)∥ < ε.]

Define δs,t > 0 to be δ′/3 and observe that the disk D
(
(s, t), δs,t

)
contains (s, t).

Thus, we have a covering {D((s, t), δs,t)}(s,t)∈K of K by open disks. (One disk for each of the infinitely
many points of K!) But since K is compact, there is a finite subcover{

D
(
(s1, t1), δ1

)
, D

(
(s2, t2), δ2

)
, . . . , D

(
(sN , tN ), δN

)}
.

That is, for every (s, t) ∈ K, there is some j ∈ {1, . . . , N} such that (s, t) ∈ D((sj , tj), δj).

Define δ = min{δ1, . . . , δN} > 0

Side Note: Why did we do that crazy open covering above? The answer is that we wanted a single
number δ > 0 that has a nice property at every point (s, t) in the original rectangle K. The problem
is that there are infinitely many points (s, t) ∈ K, so we can’t just take the minimum (or really,
infimum) of all of the radii δs,t, since the infimum of infinitely many positive numbers might be 0.

So we needed to restrict ourselves to only finitely many points (s1, t1), . . . , (sN , tN ), so that we could
take the minimum of the corresponding finitely many δj ’s. The infimum of infinitely many positive
δj ’s might be zero; but the infimum (i.e., minimum) of finitely many positive δj ’s is still positive.



OK, back to the proof. We now have a claim to make about this δ we just made:

Claim. For each point (s, t) ∈ K, there is some j ∈ {1, . . . , N} such that

D
(
(s, t), 2δ

)
⊆ D

(
(sj , tj), 3δj

)
.

Proof of Claim. Denote ∥(x, y)∥ =
√

x2 + y2, so that the distance between (x1, y1), (x2, y2) ∈ R2 is∥∥(x1, y1)− (x2, y2)∥.
We may pick j ∈ {1, . . . , N} such that (s, t) ∈ D((sj , tj), δj). Given a point (s′, t′) ∈ D((s, t), 2δ), we
have ∥∥(s′, t′)− (sj , tj)

∥∥ ≤
∥∥(s′, t′)− (s, t)

∥∥+
∥∥(s, t)− (sj , tj)

∥∥ < 2δ + δj ≤ 3δj ,

where the first inequality is the triangle inequality, the second is because (s′, t′) ∈ D((s, t), 2δ) and
(s, t) ∈ D((sj , tj), δj), and the third is because δj ≥ δ. The figure below may help explain this:

(sj,tj)

(s,t)

2δ

δj 3δj

QED Claim

[Note: the Claim, together with the way each δj was chosen earlier — as δ′/3, rather than just as δ′

— shows that for any point (s, t) ∈ K, the image of D((s, t), 2δ)∩K under T is completely contained
in a disk D(P, ε) that is itself contained in D.]

Continuing with the proof of the theorem: Pick real numbers s0, s1, . . . , sm and t0, t1, . . . , tn so that

0 = s0 < s1 < s2 < · · · < sm = 1, and a = t0 < t1 < t2 < · · · < tn = b,

and also so that si+1 − si < δ and tj+1 − tj < δ for each i = 0, . . . ,m − 1 and j = 0, . . . , n − 1. [For
example, pick m,n ≥ 1 big enough that ∆s := 1/m < δ and ∆t := (b − a)/n < δ, and then define
sj := j∆s and tj := a+ j∆t for each subscript j.] The points (si, tj) appear as the (big) dots in the
rectangle K as in the figure below:

s0 s1 s2 s3 s
m

t0

t1

t2

t3

t
n

2



Note that for each i ∈ {0, 1, . . . ,m − 1} and j ∈ {0, 1, . . . , n − 1}, every point (s, t) in the rectangle
Rij with corners at (si, tj), (si, tj+1), (si+1, tj+1), and (si+1, tj) is distance less than 2δ from (si, tj).
After all, the distance in question is√

(s− si)2 + (t− tj)2 ≤
√
(si+1 − si)2 + (tj+1 − tj)2 <

√
2δ2 < 2δ.

That is, the rectangle Rij is contained in the disk D((si, tj), 2δ), as in the following diagram:

Rij

2δ

(si, tj) (si+1, tj)

(si, tj+1) (si+1, tj+1)

By the Claim and the previous paragraph, then, the image T (Rij) of the (i, j)-th rectangle is contained
in an open disk Dij = D(T (si, tj), ε) contained in D. Since Dij is convex and hence star-shaped, our
theorem for star-shaped domains says that∫

T (∂Rij)
P dx+Qdy = 0,

since T (∂Rij) is a path in Dij starting and ending at the same point, and P dx + Qdy is closed.
Summing this equality over all the rectangles Rij for 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1, we get∫

T (∂K)
P dx+Qdy = 0,

since for any interior edge E, say from (si, tj) to (si+1, tj) for 1 ≤ j ≤ n−1, the path T (E) is traced in
one direction in the integral over T (∂Rij) and in the opposite direction in the integral over T (∂Ri(j−1)).
That is, only images of the exterior edges T (∂K) survive cancellation in the sum.

Explicitly, however, T (∂K) consists of four paths, one along each of the four edges of the original
rectangle K = [0, 1]× [a, b]. But the assumption that T is a homotopy says precisely what T does on
each of these edges! Specifically, we have the following.

First, the image T (E1) of the bottom edge E1 = [0, 1]× {a} is simply the constant path at A.

Similarly, the image T (E3) of the top edge E3 = [0, 1]× {b} (traced backwards) is the constant path
at B.

Next, the image T (E2) of the right edge E2 = {1} × [a, b] is the path γ1.

Finally, the image T (E4) of the left edge E4 = {0} × [a, b] is the path γ0, but traced backwards.

Thus, the integral around ∂K becomes simply∫
γ1

P dx+Qdy −
∫
γ0

P dx+Qdy = 0,

from which the Theorem follows immediately. QED
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