Path-Independence for Homotopic Paths

This handout presents a rigorous proof of the following theorem, which appears in Section III.2 of Gamelin's text, at the top of page 81:

Theorem. Let $D \subseteq \mathbb{R}^2$ be a domain, let $A, B \in D$, let γ_0 and γ_1 be paths from A to B in D, and let P dx + Q dy be a (smooth) closed differential form in D. If γ_0 is homotopic to γ_1 , then

$$\int_{\gamma_0} P \, dx + Q \, dy = \int_{\gamma_1} P \, dx + Q \, dy.$$

Recall the following definitions:

We say that P dx + Q dy is **closed** if:

P and Q are C^1 (i.e., they have continuous first partial derivatives), and $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

If $\gamma_0, \gamma_1 : [a, b] \to D$ are paths from A to B in D, we say that γ_0 is **homotopic** to γ_1 if there is a continuous function $T : [0, 1] \times [a, b] \to D$ such that

- $T(0,t) = \gamma_0(t)$ for all $t \in [a,b]$,
- $T(1,t) = \gamma_1(t)$ for all $t \in [a,b]$,
- T(s, a) = A for all $s \in [0, 1]$, and
- T(s,b) = B for all $s \in [0,1]$.

Note that Gamelin writes $\gamma_s(t)$ instead of T(s,t), to emphasize that intuitively, we think of T as a continuously varying family of paths from A to B.

That is, for each $s \in [0,1]$, the function $\gamma_s : [a,b] \to D$ is a path from A to B in D, and γ_s is close to γ_r whenever s is close to r.

Proof of Theorem. Define $K = [0,1] \times [a,b]$, which is a closed rectangle. Then K is compact, since it is a closed and bounded subset of \mathbb{R}^2 . We will cover K by open disks as follows:

For each point $(s,t) \in K$, because $T(s,t) \in D$ and D is open, there is some $\varepsilon > 0$ so that we have $D(T(s,t),\varepsilon) \subseteq D$. Since T is continuous, then, there is some $\delta' > 0$ such that

$$T\Big(D\big((s,t),\delta'\big)\cap K\Big)\subseteq D\big(T(s,t),\varepsilon\Big).$$

[That is, for every point $(x,y) \in K$ with $||(x,y) - (s,t)|| < \delta'$, we have $||T(x,y) - T(s,t)|| < \varepsilon$.]

Define $\delta_{s,t} > 0$ to be $\delta'/3$ and observe that the disk $D((s,t), \delta_{s,t})$ contains (s,t).

Thus, we have a covering $\{D((s,t),\delta_{s,t})\}_{(s,t)\in K}$ of K by open disks. (One disk for each of the infinitely many points of K!) But **since** K **is compact**, there is a finite subcover

$$\{D((s_1,t_1),\delta_1),D((s_2,t_2),\delta_2),\ldots,D((s_N,t_N),\delta_N)\}.$$

That is, for every $(s,t) \in K$, there is some $j \in \{1,\ldots,N\}$ such that $(s,t) \in D((s_j,t_j),\delta_j)$.

Define
$$\delta = \min\{\delta_1, \dots, \delta_N\} > 0$$

Side Note: Why did we do that crazy open covering above? The answer is that we wanted a single number $\delta > 0$ that has a nice property at **every** point (s,t) in the original rectangle K. The problem is that there are infinitely many points $(s,t) \in K$, so we can't just take the minimum (or really, infimum) of all of the radii $\delta_{s,t}$, since the infimum of infinitely many positive numbers might be 0.

So we needed to restrict ourselves to only **finitely many** points $(s_1, t_1), \ldots, (s_N, t_N)$, so that we could take the minimum of the corresponding finitely many δ_j 's. The infimum of infinitely many positive δ_j 's might be zero; but the infimum (i.e., minimum) of finitely many positive δ_j 's is **still positive**.

OK, back to the proof. We now have a claim to make about this δ we just made:

Claim. For each point $(s,t) \in K$, there is some $j \in \{1, ..., N\}$ such that

$$D((s,t),2\delta) \subseteq D((s_j,t_j),3\delta_j).$$

Proof of Claim. Denote $||(x,y)|| = \sqrt{x^2 + y^2}$, so that the distance between $(x_1,y_1), (x_2,y_2) \in \mathbb{R}^2$ is $||(x_1,y_1) - (x_2,y_2)||$.

We may pick $j \in \{1, ..., N\}$ such that $(s, t) \in D((s_j, t_j), \delta_j)$. Given a point $(s', t') \in D((s, t), 2\delta)$, we have

$$||(s',t') - (s_j,t_j)|| \le ||(s',t') - (s,t)|| + ||(s,t) - (s_j,t_j)|| < 2\delta + \delta_j \le 3\delta_j,$$

where the first inequality is the triangle inequality, the second is because $(s',t') \in D((s,t),2\delta)$ and $(s,t) \in D((s_j,t_j),\delta_j)$, and the third is because $\delta_j \geq \delta$. The figure below may help explain this:

QED Claim

[Note: the Claim, together with the way each δ_j was chosen earlier — as $\delta'/3$, rather than just as δ' — shows that for any point $(s,t) \in K$, the image of $D((s,t),2\delta) \cap K$ under T is completely contained in a disk $D(P,\varepsilon)$ that is itself contained in D.]

Continuing with the proof of the theorem: Pick real numbers s_0, s_1, \ldots, s_m and t_0, t_1, \ldots, t_n so that

$$0 = s_0 < s_1 < s_2 < \dots < s_m = 1$$
, and $a = t_0 < t_1 < t_2 < \dots < t_n = b$,

and also so that $s_{i+1} - s_i < \delta$ and $t_{j+1} - t_j < \delta$ for each i = 0, ..., m-1 and j = 0, ..., n-1. [For example, pick $m, n \ge 1$ big enough that $\Delta s := 1/m < \delta$ and $\Delta t := (b-a)/n < \delta$, and then define $s_j := j\Delta s$ and $t_j := a + j\Delta t$ for each subscript j.] The points (s_i, t_j) appear as the (big) dots in the rectangle K as in the figure below:

Note that for each $i \in \{0, 1, ..., m-1\}$ and $j \in \{0, 1, ..., n-1\}$, every point (s, t) in the rectangle R_{ij} with corners at (s_i, t_j) , (s_i, t_{j+1}) , (s_{i+1}, t_{j+1}) , and (s_{i+1}, t_j) is distance less than 2δ from (s_i, t_j) . After all, the distance in question is

$$\sqrt{(s-s_i)^2 + (t-t_j)^2} \le \sqrt{(s_{i+1}-s_i)^2 + (t_{j+1}-t_j)^2} < \sqrt{2\delta^2} < 2\delta.$$

That is, the rectangle R_{ij} is contained in the disk $D((s_i, t_i), 2\delta)$, as in the following diagram:

By the Claim and the previous paragraph, then, the image $T(R_{ij})$ of the (i, j)-th rectangle is contained in an open disk $D_{ij} = D(T(s_i, t_j), \varepsilon)$ contained in D. Since D_{ij} is convex and hence star-shaped, our theorem for star-shaped domains says that

$$\int_{T(\partial R_{ij})} P \, dx + Q \, dy = 0,$$

since $T(\partial R_{ij})$ is a path in D_{ij} starting and ending at the same point, and P dx + Q dy is closed. Summing this equality over all the rectangles R_{ij} for $0 \le i \le m-1$ and $0 \le j \le n-1$, we get

$$\int_{T(\partial K)} P \, dx + Q \, dy = 0,$$

since for any interior edge E, say from (s_i, t_j) to (s_{i+1}, t_j) for $1 \le j \le n-1$, the path T(E) is traced in one direction in the integral over $T(\partial R_{ij})$ and in the opposite direction in the integral over $T(\partial R_{i(j-1)})$. That is, only images of the exterior edges $T(\partial K)$ survive cancellation in the sum.

Explicitly, however, $T(\partial K)$ consists of four paths, one along each of the four edges of the original rectangle $K = [0, 1] \times [a, b]$. But the assumption that T is a homotopy says precisely what T does on each of these edges! Specifically, we have the following.

First, the image $T(E_1)$ of the bottom edge $E_1 = [0,1] \times \{a\}$ is simply the constant path at A. Similarly, the image $T(E_3)$ of the top edge $E_3 = [0,1] \times \{b\}$ (traced backwards) is the constant path at B

Next, the image $T(E_2)$ of the right edge $E_2 = \{1\} \times [a, b]$ is the path γ_1 .

Finally, the image $T(E_4)$ of the left edge $E_4 = \{0\} \times [a, b]$ is the path γ_0 , but traced backwards.

Thus, the integral around ∂K becomes simply

$$\int_{\gamma_1} P \, dx + Q \, dy - \int_{\gamma_0} P \, dx + Q \, dy = 0,$$

from which the Theorem follows immediately.

QED