Solutions to Selected Homework Problems, HW #1

Problem 1: I.1, #1(b) Identify and sketch the set of points 1 < |2z - 6| < 2

Solution. Since $|2z-6|=|2|\cdot|z-3|=2|z-3|$, this set is given by $\frac{1}{2}<|z-3|<1$. That is, it is the set of points $z\in\mathbb{C}$ whose distance from 3 is strictly between 1/2 and 1. So it's this open annulus:

Problem 2: I.1, #1(e) Identify and sketch the set of points |z-1| < |z|.

Solution. Since |z-1| is the distance from z to 1, and |z| is the distance from z to 0, the set where |z-1| < |z| is the set of points $z \in \mathbb{C}$ which are closer to 1 than to 0. The set of points where these two distances are the same is the vertical line $\operatorname{Re} z = \frac{1}{2}$, because on this line, the distances from z to each of 0 and 1 are the same, since the three points form an isosceles triangle:

So the desired set is the set of points strictly to the *right* of that vertical line, which is this open half-plane:

Alternative argument to see that the region is Re z > 1/2. Squaring both sides of the (real) inequality |z-1| < |z| gives $|z-1|^2 < |z|^2$. Writing z = x + iy, this inequality is just $(x-1)^2 + y^2 < x^2 + y^2$, which expands to -2x + 1 < 0, i.e., 1 < 2x, or equivalently x > 1/2. That is, Re z > 1/2.

Problem 3: I.1, #2(a,b) Verify the identities $\overline{z+w} = \overline{z} + \overline{w}$ and $\overline{zw} = \overline{z} \, \overline{w}$

Proof. Given $z, w \in \mathbb{C}$, write z = x + iy and w = u + iv with $x, y, u, v \in \mathbb{R}$.

(a): Then
$$\overline{z+w} = \overline{(x+u)+i(y+v)} = (x+u)-i(y+v) = (x-iy)+(u-iv) = \overline{z}+\overline{w}$$
 QED (a)

(b): We have:

$$\overline{zw} = \overline{(xu - yv) + i(xv + yu)} = (xu - yv) - i(xv + yu) = (x - iy)(u - iv) = \overline{z}\overline{w}$$
 QED (b)

Problem 4: I.1, #5, first half: Prove (for all $z \in \mathbb{C}$) that $|\operatorname{Re} z| \leq |z|$ and $|\operatorname{Im} z| \leq |z|$.

Proof. Given $z \in \mathbb{C}$, write z = x + iy. Then

$$|\operatorname{Re} z| = |x| = \sqrt{x^2} \le \sqrt{x^2 + y^2} = |z| \text{ and } |\operatorname{Im} z| = |y| = \sqrt{y^2} \le \sqrt{x^2 + y^2} = |z|.$$
 QED

Problem 5: I.1, #5, second half: Prove (for all $z, w \in \mathbb{C}$) that $|z + w|^2 = |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w})$. Then use this to prove the triangle inequality: $|z + w| \le |z| + |w|$.

Proof. Given $z, w \in \mathbb{C}$, let $c = z\overline{w} \in \mathbb{C}$. Then

$$|z+w|^2 = (z+w)(\overline{z+w}) = (z+w)(\overline{z}+\overline{w}) = z\overline{z} + w\overline{w} + z\overline{w} + \overline{z}w = |z|^2 + |w|^2 + c + \overline{c},$$

since $\overline{c} = \overline{z}\overline{w} = \overline{z}\overline{w} = \overline{z}w.$

Writing c = a + bi with $a, b \in i$, we have $c + \overline{c} = (a + bi) + (a - bi) = 2a = 2 \operatorname{Re}(c)$.

Thus,
$$|z + w|^2 = |z|^2 + |w|^2 + 2\operatorname{Re}(c) = |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w})$$
.

Finally, to prove the triangle inequality, the previous identity gives

$$\begin{aligned} |z+w|^2 &= |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w}) \le |z|^2 + |w|^2 + 2|\operatorname{Re}(z\overline{w})| \le |z|^2 + |w|^2 + 2|z\overline{w}| \\ &= |z|^2 + |w|^2 + 2|z||\overline{w}| = |z|^2 + |w|^2 + 2|z||w| = (|z| + |w|)^2. \end{aligned}$$

All quantities here are nonnegative real numbers, so taking square roots gives $|z+w| \leq |z| + |w|$. QED

Alternative proof of first identity. Given $z, w \in \mathbb{C}$, write z = x + iy and w = u + iv with $x, y, u, v \in \mathbb{R}$. Then

$$|z+w|^2 = |(x+u)+i(y+v)|^2 = (x+u)^2 + (y+v)^2 = x^2 + 2xu + u^2 + y^2 + 2yv + v^2$$

$$= (x^2+y^2) + (u^2+v^2) + 2(xu+yv) = |z|^2 + |w|^2 + 2\operatorname{Re}\left((xu+yv) + i(yu-xv)\right)$$

$$= |z|^2 + |w|^2 + 2\operatorname{Re}\left((x+iy)(u-iv)\right) = |z|^2 + |w|^2 + 2\operatorname{Re}\left(z\overline{w}\right)$$

Problem 6: I.2, $\#1(\mathbf{b},\mathbf{e})$: Express all values of $\sqrt{i-1}$ and $(-8)^{-1/3}$ in both polar and cartesian, and plot them.

Solution, (b). We have $|i-1| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$, and $Arg(i-1) = 3\pi/4$, as we see here:

Thus, the two square roots of i-1 are of the form $re^{i\theta}$ where $r=\sqrt[4]{2}$ and $\theta=\frac{3}{8}\pi+\frac{2\pi}{2}n$ for n=0,1. [To make the numbers smaller, let's actually subtract 2π from the second θ to get $-5\pi/8$.]

So in polar, the two roots are $\sqrt[4]{2}e^{3\pi i/8}$ and $\sqrt[4]{2}e^{-5\pi i/8}$

which in cartesian are $\sqrt[4]{2}\cos(3\pi/8) + i\sqrt[4]{2}\sin(3\pi/8)$ and $\sqrt[4]{2}\cos(5\pi/8) - i\sqrt[4]{2}\sin(5\pi/8)$, like so:

Note 1: When I wrote the cartesian answers above, I used the facts that $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta).$

Note 2: the second root is, of course, simply the negative of the first, since it is $e^{i\pi}$ times the first.

Solution, (e). We have |-8|=8, and $Arg(-8)=\pi$, so the three cube roots of -8 are of the form $re^{i\theta}$ where $r=\sqrt[3]{8}=2$ and $\theta=\frac{1}{3}\pi+\frac{2\pi}{3}n$ for n=0,1,2. That is, $\theta=\frac{\pi}{3}\pi,\pi,-\frac{\pi}{3}$, where we subtracted 2π from the third θ .

So in polar, the three roots are $2e^{\pi i/3}$, $2e^{\pi i}$, $2e^{-\pi i/3}$, like so:

Problem 7: I.2, #2(a): Sketch the set of points $z \in \mathbb{C}$ for which $|\arg z| < \pi/4$.

Solution. This condition means $-\pi/4 < \arg z < \pi/4$, which looks like this:

Problem 8: I.2, #4: For which integers $n \ge 1$ is i an n-th root of unity?

Solution/Proof. We are being asked for the set of integers $n \geq 1$ for which $i^n = 1$. We claim that this set is precisely those integers $n \geq 1$ that are divisible by 4

To see this, writing an arbitrary integer $n \ge 1$ as n = 4k + j, where k is an integer and $j \in \{0, 1, 2, 3\}$. We must show that $i^n = 1$ if and only if j = 0.

If j = 0, then $i^n = i^{4k} = (i^4)^k = 1^k = 1$, as desired. Conversely, if $j \in \{1, 2, 3\}$, then $i^n = i^{4k} \cdot i^j = i^j \neq 1$, since $i^1 = i$ and $i^2 = -1$ and $i^3 = -i$. QED

Problem 9: I.2, #8, first part: Prove that $\cos(2\theta) = \cos^2\theta - \sin^2\theta$ and $\sin(2\theta) = 2\cos\theta\sin\theta$ using DeMoivre's formulae.

Proof. DeMoivre for n = 2 says, for all $\theta \in \mathbb{R}$

$$\cos(2\theta) + i\sin(2\theta) = (\cos\theta + i\sin\theta)^2 = \cos^2\theta + 2i\cos\theta\sin\theta - \sin^2\theta$$

Taking real parts of both sides gives $\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$.

Taking imaginary parts gives $\sin(2\theta) = 2\cos\theta\sin\theta$, as desired. QED

Problem 10: I.2, #8, second part: Find and prove formulae for $\cos(4\theta)$ and $\sin(4\theta)$.

Solution/Proof. For n = 4, DeMoivre gives

 $\cos(4\theta) + i\sin(4\theta) = (\cos\theta + i\sin\theta)^4 = \cos^4\theta + 4i\cos^3\theta\sin\theta - 6\cos^2\theta\sin^2\theta - 4i\cos\theta\sin^3\theta + \sin^4\theta$

Taking real parts gives $\cos(4\theta) = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$ Taking imaginary parts gives $\sin(4\theta) = 4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta$

Alternative derivation of last identities. Applying the 2θ identities to 2θ itself, we have $\cos(4\theta) = \cos\left(2(2\theta)\right) = \cos^2(2\theta) - \sin^2(2\theta) = \left(\cos^2(\theta) - \sin^2(\theta)\right)^2 - \left(2\cos\theta\sin\theta\right)^2 = \cos^4\theta - 2\cos^2\theta\sin^2\theta + \sin^4\theta - 4\cos^2\theta\sin^2\theta = \cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta$ and $\sin(4\theta) = \sin\left(2(2\theta)\right) = 2\cos(2\theta)\sin(2\theta) = 2\left(\cos^2(\theta) - \sin^2(\theta)\right) \cdot \left(2\cos\theta\sin\theta\right) = 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta$