Solutions to Practice Problems for Midterm Exam 2

1.(a)
$$\int_{|z|=6} \frac{\cos(\pi z)}{(z-1)^3} dz$$

Answer. Let D=D(0,6), and $f(z)=\cos(\pi z)$, which is analytic everywhere, and in particular on \overline{D} . We have $f'(z)=-\pi\sin\pi z$ and hence $f''(z)=-\pi^2\cos\pi z$. Since $1\in D$, by CDF [Cauchy Differentiation Formula] the integral is $\int_{\partial D}\frac{f(z)}{(z-1)^3}\,dz=\frac{2\pi i}{2!}f''(1)=\pi i\cdot(-\pi^2\cos\pi)=\pi^3 i$.

$$\frac{1.(b) \int_{|z|=2} \frac{e^{i\pi z/2}}{z(z+1)(z+3)} dz}{1}$$

Answer. First, let $D = D(0,2) \setminus [\overline{D}(0,1/3) \cup \overline{D}(-1,1/3)]$, and let f(z) be the integrand of this integral. Then f is analytic on \overline{D} , and hence $\int_{\partial D} f(z) dz = 0$. Since ∂D consists of three circles, with the inner ones traced in the negative direction, we have

$$\int_{|z|=2} f(z) dz = \int_{|z|=1/3} f(z) dz + \int_{|z+1|=1/3} f(z) dz.$$

For the first of these two integrals, use $g(z) = e^{i\pi z/2}/[(z+1)(z+3)]$, which is analytic on $\overline{D}(0,1/3)$. By CIF [Cauchy Integral Formula], this first integral is $2\pi i g(0) = 2\pi i/3$.

For the second, use $h(z) = e^{i\pi z/2}/[z(z+3)]$, which is analytic on $\overline{D}(-1,1/3)$. By CIF [Cauchy Integral Formula], this second integral is $2\pi i h(-1) = 2\pi i e^{-i\pi/2}(-1/2) = -\pi$. So the original integral is $-\pi + 2\pi i/3$.

$$\frac{1.(c) \int_{|z-3|=2} \frac{\text{Log } z}{z^2 (z-4)^2} \, dz}{1.(c) \int_{|z-3|=2} \frac{\text{Log } z}{z^2 (z-4)^2} \, dz}$$

Answer. Let D = D(3,2), and $f(z) = \log z/z^2$, which is analytic on $\mathbb{C} \setminus (-\infty,0]$ and hence on \overline{D} . We have $f'(z) = [(1/z)z^2 - 2z \log z]/z^4 = (1 - 2 \log z)/z^3$. Since $4 \in D$, by CDF the integral is $\int_{\partial D} \frac{f(z)}{(z-4)^2} dz = \frac{2\pi i}{1!} f'(4) = 2\pi i \left(\frac{1-2\log 4}{4^3}\right) = \frac{\pi i (1-4\log 2)}{32}$. [And yes, $2 \log 4 = 4 \log 2$, although you can leave it as $2 \log 4$ if you want.]

$$\frac{e^{5z}}{1.(d) \int_{|z|=4} \frac{e^{5z}}{(z-\pi i)^3} dz}$$

Answer. Let D = D(0,4), and $f(z) = e^{5z}$, which is analytic on \mathbb{C} and hence on \overline{D} . We have $f'(z) = 5e^{5z}$ and $f''(z) = 25e^{5z}$. Since $\pi i \in D$, by CDF the integral is

$$\int_{\partial D} \frac{f(z)}{(z-\pi i)^3} dz = \frac{2\pi i}{2!} f''(\pi i) = \pi i (25e^{5\pi i}) = -25\pi i.$$

$$\frac{e^{5z}}{1.(e) \int_{|z|=\pi} \frac{e^{5z}}{(z-4)^4} dz}$$

Answer. Let $D = D(0, \pi)$, and $f(z) = e^{5z}/(z-4)^4$, which is analytic on $\mathbb{C} \setminus \{4\}$ and hence on \overline{D} . [Note: $4 \notin \overline{D}!!!$] So by Cauchy's Theorem, the integral is 0.

$$\frac{1.(f) \int_{|z-5|=4} \frac{(z-3)\sin z}{z^3(z-6)(z-8)} dz}{1}$$

Answer. Let $D = D(5,4) \setminus [\overline{D}(6,1/2) \cup \overline{D}(8,1/2)]$, and let f(z) be the integrand of this integral. Then f is analytic on \overline{D} , and hence $\int_{\partial D} f(z) dz = 0$. Since ∂D consists of three circles, with the inner ones traced in the negative direction, we have

$$\int_{|z-5|=4} f(z) dz = \int_{|z-6|=1/2} f(z) dz + \int_{|z-8|=1/2} f(z) dz.$$

For the first of these two integrals, use $g(z) = (z-3)\sin z/[z^3(z-8)]$, which is analytic on $\overline{D}(6,1/2)$. By CIF [Cauchy Integral Formula], this first integral is $2\pi i g(6) = 2\pi i (3\sin 6)/(6^3 \cdot (-2)) = -i\pi \sin 6/72$ For the second, use $h(z) = (z-3)\sin z/[z^3(z-6)]$, which is analytic on $\overline{D}(8,1/2)$. By CIF [Cauchy Integral Formula], this second integral is $2\pi i h(8) = 2\pi i (5\sin 8)/(8^3 \cdot 2) = 5i\pi \sin 8/512$. So the original integral is $i\pi \left(\frac{5\sin 8}{512} - \frac{\sin 6}{72}\right)$.

2. For each of the following functions, find its full power series expansion about z=0, as well as the radius of convergence of this power series.

Answers. (a) $f(z) = z \operatorname{Log}(z+2)$:

First, we note that $\frac{1}{z+2} = \frac{1}{2} \cdot \frac{1}{1-(-z/2)} = \sum_{k>0} \frac{(-1)^k}{2^{k+1}} z^k$, with radius of convergence R=2, since

1/(z+2) is analytic on $\mathbb{C} \setminus \{-2\}$ but blows up at -2, and |-2-0|=2.

Antidifferentiating, $\text{Log}(z+2) = C + \sum_{k>0} \frac{(-1)^k}{2^{k+1}(k+1)} z^{k+1} = C + \sum_{k>1} \frac{(-1)^{k-1}}{k \cdot 2^k} z^k$ for some constant C,

with the same radius of convergence R=2

Plugging z=0 into both sides, we have C=Log 2. Finally, multiplying by z (which does not change

R), we have
$$f(z) = z \log 2 + \sum_{k \ge 2} \frac{(-1)^k}{(k-1) \cdot 2^{k-1}} z^k$$
, with radius of convergence $R = 2$.

(b)
$$g(z) = \frac{z^2}{(z^5 - 4)^3}$$
:

First, we note that $\frac{1}{z-4} = \frac{-1}{4} \cdot \frac{1}{1-(z/4)} = \sum_{k>0} \frac{-1}{4^{k+1}} z^k$, with radius of convergence R=4, since

$$1/(z-4)$$
 is analytic on $\mathbb{C} \setminus \{4\}$ but blows up at 4 , and $|4-0|=4$. Differentiating, $\frac{-1}{(z-4)^2} = \sum_{k>0} \frac{-k}{4^{k+1}} z^{k-1}$.

Differentiating again, $\frac{2}{(z-4)^3} = \sum_{k>0} \frac{-k(k-1)}{4^{k+1}} z^{k-2} = \sum_{k>0} \frac{-(k+1)(k+2)}{4^{k+3}} z^k$, with the same radius

of convergence R=4.

Composing with z^5 , we have $\frac{2}{(z^5-4)^3} = \sum_{k>0} \frac{-(k+1)(k+2)}{4^{k+3}} z^{5k}$, with radius of convergence $R = \sqrt[5]{4}$.

Finally, multiplying by $z^2/2$, we have $g(z) = \sum_{k>0} \frac{-(k+1)(k+2)}{2 \cdot 4^{k+3}} z^{5k+2}$, with radius of convergence $R=\sqrt[5]{4}.$

3. Let $h(z) = (z^2 + 1)\sin(2z^3)$. Compute the following derivatives: $h^{(15)}(0)$, $h^{(16)}(0)$, and $h^{(17)}(0)$.

Answer. Since
$$\sin z = \sum_{k \ge 0} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$
, we have $\sin(2z^3) = \sum_{k \ge 0} \frac{(-1)^k 2^{2k+1}}{(2k+1)!} z^{6k+3}$, and hence also

$$z^{2}\sin(2z^{3}) = \sum_{k\geq 0} \frac{(-1)^{k}2^{2k+1}}{(2k+1)!} z^{6k+5}. \text{ Adding gives } h(z) = \sum_{k\geq 0} \frac{(-1)^{k}2^{2k+1}}{(2k+1)!} z^{6k+3} + \sum_{k\geq 0} \frac{(-1)^{k}2^{2k+1}}{(2k+1)!} z^{6k+5}.$$

Note that the first sum uses only powers of z that are 3 (mod 6), while the second uses only powers

that are 5 (mod 6). That is,
$$h(z) = \sum_{n \ge 0} a_n z^n$$
, where $a_n = \begin{cases} \frac{(-1)^k 2^{2k+1}}{(2k+1)!} & \text{if } n = 6k+3 \text{ for some } k, \\ \frac{(-1)^k 2^{2k+1}}{(2k+1)!} & \text{if } n = 6k+5 \text{ for some } k, \\ 0 & \text{otherwise.} \end{cases}$

So since 15 = 6k + 3 for k = 2, we have $h^{(15)}(0) = 15!a_{15} = \frac{15! \cdot 2^5}{5!}$. And since 16 is neither 3 or 5 (mod 6), we have $h^{(16)}(0) = 15!a_{16} = 0$. Finally, since 17 = 6k + 5 for k = 2, we have $h^{(17)}(0) = 17!a_{17} = \frac{17! \cdot 2^5}{5!}$.

4. (a) Find the power series centered at z = 0 of these two functions:

$$g(z) = ze^{(z^2)} \qquad \text{and} \qquad h(z) = \cos(2z).$$

- (b) Consider the power series $\sum_{k=0}^{\infty} a_k z^k$ centered at z=0 for $f(z)=\frac{ze^{(z^2)}}{\cos(2z)}$. Use part (a) to compute a_k for each of $k=0,\ldots,6$.
- (c) For f(z) as in part (b), compute $f^{(5)}(0)$.
- (d) What is the radius of convergence of the power series in part (b)? (Briefly) explain why.

Answers. (a): Since
$$e^z = \sum_{k \geq 0} \frac{z^k}{k!}$$
, we have $e^{z^2} = \sum_{k \geq 0} \frac{z^{2k}}{k!}$, and hence $g(z) = ze^{z^2} = \sum_{k \geq 0} \frac{z^{2k+1}}{k!}$. Since $\cos z = \sum_{k \geq 0} \frac{(-1)^k z^{2k}}{(2k)!}$, we have $h(z) = \cos 2z = \sum_{k \geq 0} \frac{(-4)^k z^{2k}}{(2k)!}$.

(b): Writing each of the power series of part (a) up to the z^6 terms, we have

$$g(z) = z + z^3 + \frac{z^5}{2} + O(z^7)$$
 and $h(z) = 1 - 2z^2 + \frac{2}{3}z^4 - \frac{4}{45}z^6 + O(z^7)$.

Thus,

$$\frac{1}{h(z)} = \frac{1}{1 - (2z^2 - \frac{2}{3}z^4 + \frac{4}{45}z^6 + O(z^7))} = 1 + (2z^2 - \frac{2}{3}z^4 + \frac{4}{45}z^6) + (2z^2 - \frac{2}{3}z^4)^2 + (2z^2)^3 + O(z^7)$$

$$= 1 + 2z^2 + \left(-\frac{2}{3} + 4\right)z^4 + \left(\frac{4}{45} - \frac{8}{3} + 8\right)z^6 + O(z^7) = 1 + 2z^2 + \frac{10}{3}z^4 + \frac{244}{45}z^6 + O(z^7)$$

Multiplying, then, we have

$$f(z) = \frac{g(z)}{h(z)} = z + (1+2)z^3 + \left(\frac{1}{2} + 2 + \frac{10}{3}\right)z^5 + O(z^7) = z + 3z^3 + \frac{35}{6}z^5 + O(z^7).$$

That is, $a_0 = a_2 = a_4 = a_6 = 0$, $a_1 = 1$, $a_3 = 3$, and $a_5 = 35/6$.

(c): We have
$$f^{(5)}(0) = 5! \cdot a_5 = \frac{120 \cdot 35}{6} = 20 \cdot 35 = 700$$

(d): f = g/h is analytic everywhere that $h(z) \neq 0$. In particular, the closest points to 0 at which $\cos(2z) = 0$ are where $2z = \pm \pi/2$, i.e., $z = \pm \pi/4$. In particular, f is analytic on $D(0, \pi/4)$ but not on any larger disk centered at 0. Since h(z) = 0 at these two points but g(z) is nonzero there, f actually blows up at those points, so there is no function agreeing with f on $D(0, \pi/4)$ but analytic on a larger disk. Thus, the radius of convergence of the power series must be $R = \pi/4$.

5. Let $D = \{z \in \mathbb{C} : \operatorname{Re} z \leq -2\}$. Prove that $\sum_{i=1}^{\infty} n^{z}$ converges uniformly on D, where n^{z} denotes

Proof. For each integer $n \ge 1$, define $M_n = 1/n^2$. For any $z \in D$ and any $n \ge 1$, writing z = x + iy, we have

$$|n^z| = |e^{(x+iy)\log n}| = |e^{x\log n}e^{iy\log n}| = |e^{x\log n}| = n^x \le n^{-2} = M_n.$$

Meanwhile, $\sum_{n\geq 1} M_n = \sum_{n\geq 1} n^{-2}$ converges by the p-test, since 2>1. Thus, the original sum converges uniformly on D, by the Weierstrass M-Test. **QED**

6. Let
$$E = \{z \in \mathbb{C} : |z| \ge 7\}$$
. Prove that $\sum_{k=1}^{\infty} \frac{z^k}{5k - z^{3k}}$ converges uniformly on E .

Proof. For each integer $k \ge 1$, define $M_k = 1/7^k$. For any $z \in E$ and any $k \ge 1$, note that

$$|z|^{3k} - |z|^{2k} \ge |z|^{2k} (|z|^k - 1) \ge 49^k (7 - 1) \ge 5k,$$

and hence $|5k - z^{3k}| \ge |z^{3k}| - |5k| \ge |z|^{2k}$. Thus, $\left|\frac{z^k}{5k - z^{3k}}\right| \le \frac{|z|^k}{|z|^{2k}} = \frac{1}{|z|^k} \le \frac{1}{7^k} = M_k$. Meanwhile, $\sum_{k\geq 1} M_k = \sum_{k\geq 1} 7^{-k}$ converges by the Geometric Series Test (since r=1/7 has |r|<1). Thus, the original sum converges uniformly on E, by the Weierstrass M-Test. QED

7. Let f be an entire function with the property that for all $z \in \mathbb{C}$,

$$f(z+1) = f(z+i) = f(z).$$

Prove that f is constant.

Proof. Let E be the closed square with vertices at 0, 1, i, 1+i; that is, $E = \{x+iy: x, y \in [0,1]\}$. Since E is closed and bounded, it is compact. Since f is entire, the real-valued function |f(z)| is continuous on E and hence attains a maximum value $M \in \mathbb{R}$. We claim that $|f(z)| \leq M$ for all $z \in \mathbb{C}$. Given $z \in \mathbb{C}$, write z = x + iy, and write x = m + s and y = n + t with $m, n \in \mathbb{Z}$ and $s, t \in [0, 1)$. By repeated application of the equations of the hypotheses [technically by induction on $m, n \geq 0$ and then by a quick extra argument for $m, n \leq -1$, we have f(z) = f(s+it). Since $s+it \in E$, we have $|f(z)| = |f(s+it)| \le M$, proving the claim. **QED**

Thus, f is both entire and bounded. By Liouville's Theorem, f is constant.