
Math 345, Fall 2025 Professor Rob Benedetto

Solutions to Practice Problems for Midterm Exam 2

1.(a)

∫
|z|=6

cos(πz)

(z − 1)3
dz

Answer. Let D = D(0, 6), and f(z) = cos(πz), which is analytic everywhere, and in particular
on D. We have f ′(z) = −π sinπz and hence f ′′(z) = −π2 cosπz. Since 1 ∈ D, by CDF [Cauchy

Differentiation Formula] the integral is

∫
∂D

f(z)

(z − 1)3
dz =

2πi

2!
f ′′(1) = πi · (−π2 cosπ) = π3i.

1.(b)

∫
|z|=2

eiπz/2

z(z + 1)(z + 3)
dz

Answer. First, let D = D(0, 2) ∖ [D(0, 1/3) ∪ D(−1, 1/3)], and let f(z) be the integrand of this
integral. Then f is analytic on D, and hence

∫
∂D f(z) dz = 0. Since ∂D consists of three circles, with

the inner ones traced in the negative direction, we have∫
|z|=2

f(z) dz =

∫
|z|=1/3

f(z) dz +

∫
|z+1|=1/3

f(z) dz.

For the first of these two integrals, use g(z) = eiπz/2/[(z + 1)(z + 3)], which is analytic on D(0, 1/3).
By CIF [Cauchy Integral Formula], this first integral is 2πig(0) = 2πi/3.
For the second, use h(z) = eiπz/2/[z(z+3)], which is analytic on D(−1, 1/3). By CIF [Cauchy Integral
Formula], this second integral is 2πih(−1) = 2πie−iπ/2(−1/2) = −π.
So the original integral is −π + 2πi/3.

1.(c)

∫
|z−3|=2

Log z

z2(z − 4)2
dz

Answer. Let D = D(3, 2), and f(z) = Log z/z2, which is analytic on C ∖ (−∞, 0] and hence on D.
We have f ′(z) = [(1/z)z2 − 2z Log z]/z4 = (1 − 2Log z)/z3. Since 4 ∈ D, by CDF the integral is∫
∂D

f(z)

(z − 4)2
dz =

2πi

1!
f ′(4) = 2πi

(1− 2 log 4

43

)
=

πi(1− 4 log 2)

32
. [And yes, 2 log 4 = 4 log 2, although

you can leave it as 2 log 4 if you want.]

1.(d)

∫
|z|=4

e5z

(z − πi)3
dz

Answer. Let D = D(0, 4), and f(z) = e5z, which is analytic on C and hence on D. We have
f ′(z) = 5e5z and f ′′(z) = 25e5z. Since πi ∈ D, by CDF the integral is∫
∂D

f(z)

(z − πi)3
dz =

2πi

2!
f ′′(πi) = πi(25e5πi) = −25πi.

1.(e)

∫
|z|=π

e5z

(z − 4)4
dz

Answer. Let D = D(0, π), and f(z) = e5z/(z − 4)4, which is analytic on C ∖ {4} and hence on D.
[Note: 4 ̸∈ D!!!] So by Cauchy’s Theorem, the integral is 0.

1.(f)

∫
|z−5|=4

(z − 3) sin z

z3(z − 6)(z − 8)
dz



Answer. Let D = D(5, 4) ∖ [D(6, 1/2) ∪ D(8, 1/2)], and let f(z) be the integrand of this integral.
Then f is analytic on D, and hence

∫
∂D f(z) dz = 0. Since ∂D consists of three circles, with the inner

ones traced in the negative direction, we have∫
|z−5|=4

f(z) dz =

∫
|z−6|=1/2

f(z) dz +

∫
|z−8|=1/2

f(z) dz.

For the first of these two integrals, use g(z) = (z − 3) sin z/[z3(z − 8)], which is analytic on D(6, 1/2).
By CIF [Cauchy Integral Formula], this first integral is 2πig(6) = 2πi(3 sin 6)/(63 ·(−2)) = −iπ sin 6/72
For the second, use h(z) = (z − 3) sin z/[z3(z − 6)], which is analytic on D(8, 1/2). By CIF [Cauchy
Integral Formula], this second integral is 2πih(8) = 2πi(5 sin 8)/(83 · 2) = 5iπ sin 8/512.

So the original integral is iπ
(5 sin 8

512
− sin 6

72

)
.

2. For each of the following functions, find its full power series expansion about z = 0, as well as the
radius of convergence of this power series.

Answers. (a) f(z) = z Log(z + 2):

First, we note that
1

z + 2
=

1

2
· 1

1− (−z/2)
=

∑
k≥0

(−1)k

2k+1
zk, with radius of convergence R = 2, since

1/(z + 2) is analytic on C∖ {−2} but blows up at −2, and | − 2− 0| = 2.

Antidifferentiating, Log(z+2) = C +
∑
k≥0

(−1)k

2k+1(k + 1)
zk+1 = C +

∑
k≥1

(−1)k−1

k · 2k
zk for some constant C,

with the same radius of convergence R = 2.
Plugging z = 0 into both sides, we have C = Log 2. Finally, multiplying by z (which does not change

R), we have f(z) = z log 2 +
∑
k≥2

(−1)k

(k − 1) · 2k−1
zk, with radius of convergence R = 2.

(b) g(z) =
z2

(z5 − 4)3
:

First, we note that
1

z − 4
=

−1

4
· 1

1− (z/4)
=

∑
k≥0

−1

4k+1
zk, with radius of convergence R = 4, since

1/(z − 4) is analytic on C∖ {4} but blows up at 4, and |4− 0| = 4.

Differentiating,
−1

(z − 4)2
=

∑
k≥0

−k

4k+1
zk−1.

Differentiating again,
2

(z − 4)3
=

∑
k≥0

−k(k − 1)

4k+1
zk−2 =

∑
k≥0

−(k + 1)(k + 2)

4k+3
zk, with the same radius

of convergence R = 4.

Composing with z5, we have
2

(z5 − 4)3
=

∑
k≥0

−(k + 1)(k + 2)

4k+3
z5k, with radius of convergence R = 5

√
4.

Finally, multiplying by z2/2, we have g(z) =
∑
k≥0

−(k + 1)(k + 2)

2 · 4k+3
z5k+2, with radius of convergence

R = 5
√
4.

3. Let h(z) = (z2 + 1) sin(2z3). Compute the following derivatives: h(15)(0), h(16)(0), and h(17)(0).

Answer. Since sin z =
∑
k≥0

(−1)k

(2k + 1)!
z2k+1, we have sin(2z3) =

∑
k≥0

(−1)k22k+1

(2k + 1)!
z6k+3, and hence also



z2 sin(2z3) =
∑
k≥0

(−1)k22k+1

(2k + 1)!
z6k+5. Adding gives h(z) =

∑
k≥0

(−1)k22k+1

(2k + 1)!
z6k+3+

∑
k≥0

(−1)k22k+1

(2k + 1)!
z6k+5.

Note that the first sum uses only powers of z that are 3 (mod 6), while the second uses only powers

that are 5 (mod 6). That is, h(z) =
∑
n≥0

anz
n, where an =


(−1)k22k+1

(2k + 1)!
if n = 6k + 3 for some k,

(−1)k22k+1

(2k + 1)!
if n = 6k + 5 for some k,

0 otherwise.

So since 15 = 6k + 3 for k = 2, we have h(15)(0) = 15!a15 =
15! · 25

5!
.

And since 16 is neither 3 or 5 (mod 6), we have h(16)(0) = 15!a16 = 0.

Finally, since 17 = 6k + 5 for k = 2, we have h(17)(0) = 17!a17 =
17! · 25

5!
.

4. (a) Find the power series centered at z = 0 of these two functions:

g(z) = ze(z
2) and h(z) = cos(2z).

(b) Consider the power series

∞∑
k=0

akz
k centered at z = 0 for f(z) =

ze(z
2)

cos(2z)
.

Use part (a) to compute ak for each of k = 0, . . . , 6.

(c) For f(z) as in part (b), compute f (5)(0).

(d) What is the radius of convergence of the power series in part (b)?
(Briefly) explain why.

Answers. (a): Since ez =
∑
k≥0

zk

k!
, we have ez

2
=

∑
k≥0

z2k

k!
, and hence g(z) = zez

2
=

∑
k≥0

z2k+1

k!
.

Since cos z =
∑
k≥0

(−1)kz2k

(2k)!
, we have h(z) = cos 2z =

∑
k≥0

(−4)kz2k

(2k)!
.

(b): Writing each of the power series of part (a) up to the z6 terms, we have

g(z) = z + z3 +
z5

2
+O(z7) and h(z) = 1− 2z2 +

2

3
z4 − 4

45
z6 +O(z7).

Thus,

1

h(z)
=

1

1− (2z2 − 2
3z

4 + 4
45z

6 +O(z7))
= 1 + (2z2 − 2

3
z4 +

4

45
z6) + (2z2 − 2

3
z4)2 + (2z2)3 +O(z7)

= 1 + 2z2 +
(
− 2

3
+ 4

)
z4 +

( 4

45
− 8

3
+ 8

)
z6 +O(z7) = 1 + 2z2 +

10

3
z4 +

244

45
z6 +O(z7)

Multiplying, then, we have

f(z) =
g(z)

h(z)
= z + (1 + 2)z3 +

(1
2
+ 2 +

10

3

)
z5 +O(z7) = z + 3z3 +

35

6
z5 +O(z7).

That is, a0 = a2 = a4 = a6 = 0, a1 = 1, a3 = 3, and a5 = 35/6.

(c): We have f (5)(0) = 5! · a5 =
120 · 35

6
= 20 · 35 = 700



(d): f = g/h is analytic everywhere that h(z) ̸= 0. In particular, the closest points to 0 at which
cos(2z) = 0 are where 2z = ±π/2, i.e., z = ±π/4. In particular, f is analytic on D(0, π/4) but not on
any larger disk centered at 0. Since h(z) = 0 at these two points but g(z) is nonzero there, f actually
blows up at those points, so there is no function agreeing with f on D(0, π/4) but analytic on a larger
disk. Thus, the radius of convergence of the power series must be R = π/4.

5. Let D = {z ∈ C : Re z ≤ −2}. Prove that
∞∑
n=1

nz converges uniformly on D, where nz denotes

ez Logn.

Proof. For each integer n ≥ 1, define Mn = 1/n2. For any z ∈ D and any n ≥ 1, writing z = x+ iy,
we have

|nz| = |e(x+iy) logn| = |ex logneiy logn| = |ex logn| = nx ≤ n−2 = Mn.

Meanwhile,
∑

n≥1Mn =
∑

n≥1 n
−2 converges by the p-test, since 2 > 1. Thus, the original sum

converges uniformly on D, by the Weierstrass M-Test. QED

6. Let E = {z ∈ C : |z| ≥ 7}. Prove that

∞∑
k=1

zk

5k − z3k
converges uniformly on E.

Proof. For each integer k ≥ 1, define Mk = 1/7k. For any z ∈ E and any k ≥ 1, note that

|z|3k − |z|2k ≥ |z|2k(|z|k − 1) ≥ 49k(7− 1) ≥ 5k,

and hence |5k − z3k| ≥ |z3k| − |5k| ≥ |z|2k. Thus,
∣∣∣ zk

5k − z3k

∣∣∣ ≤ |z|k

|z|2k
=

1

|z|k
≤ 1

7k
= Mk. Meanwhile,∑

k≥1Mk =
∑

k≥1 7
−k converges by the Geometric Series Test (since r = 1/7 has |r| < 1). Thus, the

original sum converges uniformly on E, by the Weierstrass M-Test. QED

7. Let f be an entire function with the property that for all z ∈ C,

f(z + 1) = f(z + i) = f(z).

Prove that f is constant.

Proof. Let E be the closed square with vertices at 0, 1, i, 1 + i; that is, E = {x+ iy : x, y ∈ [0, 1]}.
Since E is closed and bounded, it is compact. Since f is entire, the real-valued function |f(z)| is
continuous on E and hence attains a maximum value M ∈ R. We claim that |f(z)| ≤ M for all z ∈ C.
Given z ∈ C, write z = x + iy, and write x = m + s and y = n + t with m,n ∈ Z and s, t ∈ [0, 1).
By repeated application of the equations of the hypotheses [technically by induction on m,n ≥ 0 and
then by a quick extra argument for m,n ≤ −1], we have f(z) = f(s + it). Since s + it ∈ E, we have
|f(z)| = |f(s+ it)| ≤ M , proving the claim.
Thus, f is both entire and bounded. By Liouville’s Theorem, f is constant. QED


