1. (17 points) Find the set of all solutions \((x, y, z, w) \in \mathbb{R}^4\) to the following system of equations.

\[
egin{align*}
 x - 2y + 3z - 2w &= 2 \\
 2x + y + z + 6w &= 14 \\
 x + y + 4w &= 8
\end{align*}
\]

Solution. Row reduction gives

\[
\begin{align*}
 -2R_1 & \rightarrow \begin{bmatrix} 1 & -2 & 3 & -2 & 2 \\ 2 & 1 & 1 & 6 & 14 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & -2 & 2 \\ 0 & 5 & -5 & 10 & 10 \end{bmatrix} \\
 -R_1 & \rightarrow \begin{bmatrix} 1 & 1 & 0 & 4 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 3 & -3 & 6 & 6 \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
 +2R_2 & \rightarrow \begin{bmatrix} 1 & -2 & 3 & -2 & 2 \\ 0 & 1 & -1 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & 6 \\ 0 & 1 & -1 & 2 & 2 \end{bmatrix} \\
 -3R_2 & \rightarrow \begin{bmatrix} 0 & 3 & -3 & 6 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\end{align*}
\]

So \(z, w\) are the free variables (since there are pivots in the columns for \(x, y\)), and we have \(x = 6 - z - 2w\) and \(y = 2 + z - 2w\). So the solution set is

\[
\{(6 - z - 2w, 2 + z - 2w, z, w) \mid z, w \in \mathbb{R}\}
\]

2. (12 points) Let \(V\) be a vector space, and let \(S = \{\vec{x}_1, \ldots, \vec{x}_n\} \subseteq V\) be a finite subset. Define the following terms and phrases. You may use other standard terms without defining them.

2a. Span\((S)\).

2b. \(S\) is linearly independent.

Answers.

(a): Span\((S)\) is the set of all linear combinations of elements of \(S\).

(b): \(S\) is linearly independent if for all \(a_1, \ldots, a_n \in \mathbb{R}\) such that \(a_1\vec{x}_1 + \cdots + a_n\vec{x}_n = \vec{0}\), we have \(a_1 = \cdots = a_n = 0\).

3. (15 points) Prove the following theorem we have learned:

Let \(V\) be a vector space, and let \(W_1, W_2 \subseteq V\) be subspaces of \(V\). Then \(W_1 \cap W_2\) is a subspace of \(V\).

Proof. (Nonempty): We have \(\vec{0} \in W_1\) and \(\vec{0} \in W_2\), since \(W_1\) and \(W_2\) are subspaces of \(V\). Thus, \(\vec{0} \in W_1 \cap W_2\).

(Closure): Given \(\vec{x}, \vec{y} \in W_1 \cap W_2\) and \(c \in \mathbb{R}\), then since \(\vec{x}, \vec{y} \in W_1\), we have \(c\vec{x} + \vec{y} \in W_1\). Similarly, since \(\vec{x}, \vec{y} \in W_2\), we have \(c\vec{x} + \vec{y} \in W_2\). Thus, \(c\vec{x} + \vec{y} \in W_1 \cap W_2\). QED

4. (12 points) Working in the vector space \(\mathbb{R}^4\), let \(S = \{(2, 1, 0, 3), (0, 1, -1, 2)\}\). Is \((4, 3, 2, 1) \in \text{Span}(S)\)? Why or why not?

Answer: No. To see this:
Write \(\vec{x} = (2, 1, 0, 3) \) and \(\vec{y} = (0, 1, -1, 2) \), and \(\vec{v} = (4, 3, 2, 1) \). Suppose \(\vec{v} \in \text{Span}(S) \). Then there exist \(a, b \in \mathbb{R} \) such that \(\vec{v} = a\vec{x} + b\vec{y} \). That is,

\[
(4, 3, 2, 1) = a(2, 1, 0, 3) + b(0, 1, -1, 2),
\]
i.e.,

\[
(4, 3, 2, 1) = (2a, a + b, -b, 3a + 2b).
\]

Equating coefficients, we have

\[
2a = 4, \quad a + b = 3, \quad -b = 2, \quad 3a + 2b = 1.
\]

The first of these equations says \(a = 2 \), and the third says \(b = -2 \). But then \(a + b = 0 \), contradicting the second equation. Thus, no such \(a, b \) exist, so \(\vec{v} \not\in \text{Span}(S) \).

5. (15 points) Let \(V = F(\mathbb{R}) \), the vector space of functions from \(\mathbb{R} \) to \(\mathbb{R} \).

Let \(W = \{ f \in V \mid f(5) = 4f(2) \} \). Prove that \(W \) is a subspace of \(V \).

Proof. (Nonempty): Let \(g = 0 \), the zero-function. Then \(g(5) = 0 = 4 \cdot 0 = 4g(2) \), so \(g \in W \).

(Closure): Given \(f, g \in W \) and \(c \in \mathbb{R} \), we have

\[
(cf + g)(5) = c(f(5)) + g(5) = c(4f(2)) + 4g(2) = 4(cf(2) + g(2)) = 4((cf + g)(2)),
\]
and hence \(cf + g \in W \). QED

6. (17 points) Let \(V = P_2(\mathbb{R}) \), the vector space of polynomials of degree at most 2.

Let \(W = \{ p \in V \mid p(2) = 2p'(0) \} \).

It is a fact, which you may assume, that \(W \) **is a subspace of** \(P_2(\mathbb{R}) \).

Find a basis for \(W \).

Solution. Write \(p \in V \) as \(p(x) = ax + bx + cx^2 \), so \(p' = b + 2cx \). So the equation \(p(2) = 2p'(0) \) says \(a + 2b + 4c = 2b \), i.e., \(a = -4c \). So

\[
W = \{ (-4c) + bx + cx^2 \mid b, c \in \mathbb{R} \} = \{ bx + c(x^2 - 4) \mid b, c \in \mathbb{R} \} = \text{Span}(S),
\]

where \(S = \{ x, x^2 - 4 \} \). We have that \(S \) spans \(W \) by the above equality. Moreover, \(S \) is linearly independent because it has exactly two elements, and neither is a multiple of the other.

[An alternate way to see that \(S \) is linearly independent is to quote a Corollary that \(\dim(W) \) is the number of free variables, i.e., 2. Since \(S \) spans \(W \) and has the correct number of elements, the two-out-of-three Corollary then says that \(S \) is also linearly independent.]

Thus, \(S = \{ x, x^2 - 4 \} \) is a basis for \(W \).

7. (12 points) In this problem, \(a, b, c \in \mathbb{R} \) are three specific numbers that I am keeping secret.

7a. Consider the set \(S_1 = \left\{ \begin{bmatrix} 0 \\ 3 \\ 4 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} a \\ b \\ 7 \\ c \end{bmatrix} \right\} \) of three vectors in \(\mathbb{R}^4 \).

Take my word for it that \(S_1 \) is linearly independent. Is \(\text{Span}(S_1) = \mathbb{R}^4 \)?
Answer “Yes,” “No,” or “Need more information.” Justify your answer.

7b. Consider the set
\[S_2 = \left\{ \begin{bmatrix} 5 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} a \\ b \\ 6 \end{bmatrix} \right\} \] of four vectors in \(\mathbb{R}^4 \).

Take my word for it that \(\text{Span}(S_2) = \mathbb{R}^4 \). Is \(S_2 \) linearly independent?
Answer “Yes,” “No,” or “Need more information.” Justify your answer.

Solutions. (a): No. \(\mathbb{R}^4 \) has a basis with 4 elements, and hence a linearly independent set with 4 elements. By a Theorem, any spanning set must have at least as many elements as any linearly independent set; so any spanning set must have at least 4 elements. Therefore, since \(\#S_1 = 3 < 4 \), \(S_1 \) cannot span \(\mathbb{R}^4 \).

(b): Yes. Since \(S_2 \) spans \(\mathbb{R}^4 \) and has the same number of elements (namely, 4) as a basis, the two-out-of-three corollary says that \(S_2 \) is a basis for \(\mathbb{R}^4 \) and hence is linearly independent.

OPTIONAL BONUS. (2 points) Let \(V \) be a vector space, let \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \in V \), and let \(a_1, a_2, a_3, a_4 \in \mathbb{R} \). Suppose \(\dim(V) = 12 \), and let

\[S = \{ a_1 \vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3 + a_4 \vec{v}_4, a_1 \vec{v}_1 + a_4 \vec{v}_3 + a_2 \vec{v}_4 \} \]

Suppose that the (five) elements of \(S \) are all distinct. Prove that the set \(S \) is linearly dependent.

Proof. Let \(T = \{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \} \), and let \(W = \text{Span}(T) \), which is a subspace of \(V \).
Since \(W \) is closed under the operations, it follows that \(S \subseteq W \). If \(S \) were linearly independent, then by a theorem from class and the book [Theorem 1.6.6], we have \(\#S \leq \#T \), since both are subsets of \(W \) with \(S \) being linearly independent and \(T \) spanning \(W \).
However, \(S \) has five elements, while \(T \) has only four. This is a contradiction. Thus, \(S \) cannot be linearly independent; it must be linearly dependent.

QED