
Math 220, Section 03, Fall 2025 Professor Rob Benedetto

Solutions to Homework #9

1. Section 3.2, Problem 3 (8 points)
Let a, b, s, t, u, v ∈ Z be integers such that sa+ tb = 21 and ua+ vb = 10. Prove that gcd(a, b) = 1.

Proof. We have

(s− 2u)a+ (t− 2v)b = (sa+ tb)− 2(ua+ vb) = 21− 2(10) = 1.

Since s− 2u, t = 2v ∈ Z, we have that gcd(a, b) = 1. QED

Note: that last conclusion is by Theorem 3.2.3. Or, if you object that Theorem 3.2.3 is only stated for
a, b ∈ N — in fact, it is true for all a, b ∈ Z — then here’s a proof, essentially just quoting the end of the
proof of Theorem 3.2.3:

If d ∈ N divides both a and b, i.e., if there exist integers k, ℓ ∈ Z such that a = dk and b = dℓ, then
1 = dk(s− 2u) + dℓ(t− 2v) = dn where n = k(s− 2u) + ℓ(t− 2v) ∈ Z. Thus, 1 is divisible by d ∈ N, and
since the only divisors of 1 are ±1, we have d = 1. That is, the only common divisor of a and b is 1, so
the greatest common divisor of a and b is also 1.

2. Section 3.2, Problem 9 (10 points)
Let a, b ∈ Z ∖ {0} be nonzero integers. Prove that gcd(a, b) = 1 if and only if gcd(a, a+ b) = 1.

Proof (Method 1). Given a, b ∈ Z ∖ {0} arbitrary.
(=⇒): Assume gcd(a, b) = 1. For any common divisor d ∈ N of both a and a + b, there are integers
m,n ∈ Z such that a = md and a+ b = nd. Therefore, b = (a+ b)− a = (n−m)d is also divisible by d.
So d is a common divisor of both a and b. Since gcd(a, b) = 1, it follows that d = 1. Because this was
true for all such d, we have that gcd(a, a+ b) = 1.

(⇐=): Assume gcd(a + b, b) = 1. For any common divisor d ∈ N of both a and b, there are integers
m,n ∈ Z such that a = md and b = nd. Therefore, a+ b = (m+ n)d is also divisible by d.
So d is a common divisor of both a and a+ b. Since gcd(a, a+ b) = 1, it follows that d = 1. Because this
was true for all such d, we have that gcd(a, b) = 1. QED

Proof (Method 2). Given a, b ∈ Z ∖ {0}:
(=⇒): By Theorem 3.2.5 [extended to all integers], there are integers m,n ∈ Z such that ma + nb = 1.
Thus, (m−n)a+n(a+ b) = ma+nb = 1. Since m−n and n are integers, it follows from Theorem 3.2.5
that gcd(a, a+ b) = 1.
(⇐=) By Theorem 3.2.5 [extended to all integers], there are integers m,n ∈ Z such that ma+n(a+b) = 1.
Thus, (m+n)a+nb = ma+n(a+ b) = 1. Since m+n and n are integers, it follows from Theorem 3.2.5
that gcd(a, b) = 1. QED

3. Section 3.3, Problem 3 (12 points)
Prove Corollary 3.3.5: For any m,n ∈ N, we have mn = gcd(m,n) lcm(m,n)

Proof. Let p1, . . . , pk be all of the distinct prime numbers that divide m or n. Then there are nonnegative
integers e1, . . . , ek, f1, . . . , fk ≥ 0 such that

m = pe11 · · · pekk and n = pf11 · · · pfkk .

(Note that it’s possible that not all of the primes p1, . . . , pk divide m, and similarly for n, so that some
of the exponents ei, fi may be 0.)

Lemma. For any integers e, f we have min{e, f}+max{e, f} = e+ f .

Proof of Lemma. Without loss of generality, we have e ≤ f . Thus, min{e, f} = e and max{e, f} = f .
The conclusion of the Lemma follows immediately. QED Lemma



By Corollary 3.3.4, we have

gcd(m,n) = p
min{e1,f1}
1 · · · pmin{ek,fk}

1 and lcm(m,n) = p
max{e1,f1}
1 · · · pmax{ek,fk}

1 .

Thus, by the Lemma above,

mn = pe1+f1
1 · · · pek+fk

k = p
min{e1,f1}+max{e1,f1}
1 · · · pmin{ek,fk}+max{ek,fk}

k

=
(
p
min{e1,f1}
1 · · · pmin{ek,fk}

k

)
·
(
p
max{e1,f1}
1 · · · pmax{ek,fk}

k

)
= gcd(m,n) lcm(m,n). QED

Note: You don’t have to state the thing about min{e, f}+max{e, f} = e+ f as being its own Lemma.
I just found that to be the easiest way to say it, for clarity.

4. Section 3.3, Problem 6 (10 points)

Prove that for every n ∈ N, we have
(3n)!

3n
∈ N

Proof. By induction on n ≥ 1.

Base case: n = 1. Then (3n)! = 3! = 6, and 3n = 3, and so
(3n)!

3n
=

6

3
= 2 ∈ N.

Inductive Step: Assume the conclusion is true for some particular n ∈ N; we will prove it for n + 1.

Let m =
(3n)!

3n
∈ N.

Then
(3(n+ 1))!

3n+1
=

3(n+ 1) · (3n+ 2) · (3n+ 1)

3
· (3n)!

3n
= (n+ 1) · (3n+ 2) · (3n+ 1) ·m is a product of

positive integers, and hence is a positive integer, as desired. QED

5. Section 3.3, Problem 10 (14 points)
Let a, d ∈ N. Prove that d|a if and only if d2|a2.
Proof. Given a, d ∈ N:
(=⇒): By assumption, there is an integer k ∈ Z such that a = dk. Then a2 = (d2)(k2), and hence
because k2 ∈ Z as well, we have d2|a2.
(⇐=): By assumption, there is an integer m ∈ Z such that a2 = md2. Since a, d > 0, we have m > 0, so
m ∈ N.
Let p1, . . . , pk be all of the distinct prime numbers that divide a or d or m. Then there are nonnegative
integers e1, . . . , ek, f1, . . . , fk, g1, . . . , gk ≥ 0 such that

a = pe11 · · · pekk , d = pf11 · · · pfkk , and m = pg11 · · · pgkk .

Plugging these values in the equation a2 = md2, we obtain

p2e11 · · · p2ekk = p2f1+g1
1 · · · p2fk+gk

k .

By the uniqueness of prime factorizations, then, we have 2ei = 2fi + gi for every i = 1, . . . , k, and hence
gi = 2(ei − fi) for each i.
For each i, let hi = ei − fi ∈ Z. We have hi = gi/2 ≥ 0, so we may define

n = ph1
1 · · · phk

k ∈ N,

which satisfies
nd =

(
ph1
1 · · · phk

k

)
·
(
pf11 · · · pfkk

)
= pe11 · · · pekk = a,

since hi + fi = ei for each i = 1, . . . k. Thus, d|a. QED

6. Section 3.3, Problem 11 (16 points)
Prove that for any n ∈ N, we have that

√
n either is an integer or is irrational.

Proof, Method 1. Suppose that
√
n is rational; we will prove that it is an integer.



By assumption, there are integers a, b ∈ Z such that
√
n = a/b; since

√
n > 0 by definition of square root

(and the fact that n > 0), we may assume that a/b > 0, i.e., that a/b ∈ N. Cancelling any minus signs,
we may further assume that a, b ∈ N.
Multiplying by b and squaring both sides, then, we have a2 = b2n. Thus, we have a, b ∈ N with b2|a2.
By Problem 5 on this assignment (i.e., Section 3.3, Problem 10), it follows that b|a.
That is, there is an integer m ∈ Z such that a = bm. Therefore,

√
n = a/b = (bm)/b = m ∈ Z is an

integer. QED

Proof, Method 2. Suppose that
√
n is rational; we will prove that it is an integer.

By assumption, there are integers a, b ∈ Z such that
√
n = a/b; since

√
n > 0 by definition of square root

(and the fact that n > 0), we may assume that a/b > 0, i.e., that a/b ∈ N.
Let p1, . . . , pk be all of the distinct prime numbers that divide n or a or b. Then there are nonnegative
integers e1, . . . , ek, f1, . . . , fk, g1, . . . , gk ≥ 0 such that

a = pe11 · · · pekk , b = pf11 · · · pfkk , and n = pg11 · · · pgkk .

Since
√
n = a/b, multiplying by b and squaring gives b2n = a2, and hence

p2f1+g1
1 · · · p2fk+gk

k = p2e11 · · · p2ekk .

By the uniqueness of prime factorizations, then, we have 2fi + gi = 2ei for every i = 1, . . . , k, and hence
gi = 2(ei − fi).
For each i, let hi = ei − fi ∈ Z. We have hi = gi/2 ≥ 0, so we may define

m = ph1
1 · · · phk

k ∈ N,

which satisfies

m = pe1−f1
1 · · · pek−fk

k =
pe11 · · · pekk
pf11 · · · pfkk

=
a

b
=

√
n.

Thus
√
n = m ∈ N is an integer. QED


