Math 220, Section 03, Fall 2025 Professor Rob Benedetto
Solutions to Homework #9

1. Section 3.2, Problem 3 (8 points)
Let a,b,s,t,u,v € Z be integers such that sa + tb = 21 and ua + vb = 10. Prove that ged(a,b) = 1.

Proof. We have
(s —2u)a+ (t — 2v)b = (sa + tb) — 2(ua + vb) = 21 — 2(10) = 1.
Since s — 2u,t = 2v € Z, we have that ged(a,b) = 1. QED

Note: that last conclusion is by Theorem 3.2.3. Or, if you object that Theorem 3.2.3 is only stated for
a,b € N — in fact, it is true for all a,b € Z — then here’s a proof, essentially just quoting the end of the
proof of Theorem 3.2.3:

If d € N divides both a and b, i.e., if there exist integers k,¢ € Z such that a = dk and b = d¢, then
1 =dk(s — 2u) 4+ df(t — 2v) = dn where n = k(s — 2u) + £(t — 2v) € Z. Thus, 1 is divisible by d € N, and
since the only divisors of 1 are +1, we have d = 1. That is, the only common divisor of a¢ and b is 1, so
the greatest common divisor of a and b is also 1.

2. Section 3.2, Problem 9 (10 points)
Let a,b € Z ~ {0} be nonzero integers. Prove that gcd(a,b) = 1 if and only if ged(a,a +b) = 1.

Proof (Method 1). Given a,b € Z ~ {0} arbitrary.

(=): Assume ged(a,b) = 1. For any common divisor d € N of both a and a + b, there are integers
m,n € Z such that a = md and a + b = nd. Therefore, b = (a + b) — a = (n —m)d is also divisible by d.
So d is a common divisor of both a and b. Since ged(a,b) = 1, it follows that d = 1. Because this was
true for all such d, we have that ged(a,a + b) = 1.

(«<=): Assume gcd(a + b,b) = 1. For any common divisor d € N of both a and b, there are integers
m,n € Z such that a = md and b = nd. Therefore, a + b = (m + n)d is also divisible by d.

So d is a common divisor of both a and a + b. Since ged(a,a + b) = 1, it follows that d = 1. Because this
was true for all such d, we have that ged(a,b) = 1. QED

Proof (Method 2). Given a,b € Z ~ {0}:

(=): By Theorem 3.2.5 [extended to all integers], there are integers m,n € Z such that ma + nb = 1.
Thus, (m —n)a+n(a+b) = ma+nb=1. Since m —n and n are integers, it follows from Theorem 3.2.5
that ged(a,a +b) = 1.

(«<=) By Theorem 3.2.5 [extended to all integers], there are integers m,n € Z such that ma+n(a+b) = 1.
Thus, (m+n)a+nb=ma+n(a+b) = 1. Since m+n and n are integers, it follows from Theorem 3.2.5
that ged(a, b) = 1. QED

3. Section 3.3, Problem 3 (12 points)
Prove Corollary 3.3.5: For any m,n € N, we have mn = ged(m,n) lem(m,n)

Proof. Let pq,...,pg be all of the distinct prime numbers that divide m or n. Then there are nonnegative

integers e1,...,€eg, f1,.-., fr > 0 such that

€k

m:pil‘.'pk: and n:p‘:{l..-pik_

(Note that it’s possible that not all of the primes py,...,pg divide m, and similarly for n, so that some
of the exponents e;, f; may be 0.)

Lemma. For any integers e, f we have min{e, f} + max{e, f} = e+ f.

Proof of Lemma. Without loss of generality, we have e < f. Thus, min{e, f} = e and max{e, f} = f.
The conclusion of the Lemma follows immediately. QED Lemma



By Corollary 3.3.4, we have

ged(m, n) = prlnin{el,ﬁ} B ‘pinin{ekafk} and lem(m,n) = pinax{el,fl} N _p;nax{ek,fk}.
Thus, by the Lemma above,
mn, — p(131+f1 . _pzzﬁ—fk _ prlnin{el,fl}+max{e1,f1} . _pznin{ekvfk}""max{ekvfk}
_ <pflnin{€17f1} . .p;nin{ek,fk}> . (p;naX{ehfl} B .pznax{ek:fk}> = ged(m, n) lem(m, n). QED

Note: You don’t have to state the thing about min{e, f} + max{e, f} = e+ f as being its own Lemma.
I just found that to be the easiest way to say it, for clarity.

4. Section 3.3, Problem 6 (10 points)

(3n)!
Prove that for every n € N, we have 3 eN

Proof. By induction on n > 1.

(3n)! 6
Base case: n = 1. Then (3n)! = 3! =6, and 3" = 3, and so =-=2ecN

3n 3
Inductive Step: Assume the conclusion is true for some particular n € N; we will prove it for n + 1.
(3n)!
Let m = =T eN.
3(n+1))! 3(n+1)-B3n+2)-(3n+1 3n)! .
Then((SnH)) = ( ) ( 3 ) ( )(3n) =(n+1)-(3n+2)-(3n+1)-m is a product of
positive integers, and hence is a positive integer, as desired. QED

5. Section 3.3, Problem 10 (14 points)

Let a,d € N. Prove that d|a if and only if d?|a.

Proof. Given a,d € N:

(=): By assumption, there is an integer k& € Z such that a = dk. Then a®> = (d?)(k?), and hence
because k? € Z as well, we have d?|a?.

(<=): By assumption, there is an integer m € Z such that a? = md?. Since a,d > 0, we have m > 0, so
m € N.

Let p1,...,pg be all of the distinct prime numbers that divide a or d or m. Then there are nonnegative
integers eq,...,ek, f1,--+5 f&, 91, .., gr > 0 such that

aZp?'--pZ’“, d:pll..,p£k7 and m:pgl.npgk‘

Plugging these values in the equation a? = md?, we obtain
2 2 2 2fr+
plel . .pkek _ plfﬁ-gl . 'pkfk Ik
By the uniqueness of prime factorizations, then, we have 2e; = 2f; + g; for every ¢ = 1,...,k, and hence

gi = 2(e; — f;) for each i.
For each i, let h; = e; — fi € Z. We have h; = g;/2 > 0, so we may define

h h

which satisﬁes
h h —
nd = <p11pkk> . <p'{1p£k) —pil"'pzk = a,

since h; + f; = e; for each i = 1,... k. Thus, dla. QED

6. Section 3.3, Problem 11 (16 points)
Prove that for any n € N, we have that \/n either is an integer or is irrational.

Proof, Method 1. Suppose that /n is rational; we will prove that it is an integer.



By assumption, there are integers a,b € Z such that /n = a/b; since v/n > 0 by definition of square root
(and the fact that n > 0), we may assume that a/b > 0, i.e., that a/b € N. Cancelling any minus signs,
we may further assume that a,b € N.

Multiplying by b and squaring both sides, then, we have a?> = b?n. Thus, we have a,b € N with v?|a?.
By Problem 5 on this assignment (i.e., Section 3.3, Problem 10), it follows that b|a.

That is, there is an integer m € Z such that a = bm. Therefore, /i = a/b = (bm)/b = m € Z is an
integer. QED

Proof, Method 2. Suppose that /n is rational; we will prove that it is an integer.

By assumption, there are integers a,b € Z such that /n = a/b; since v/n > 0 by definition of square root
(and the fact that n > 0), we may assume that a/b > 0, i.e., that a/b € N.

Let p1,...,pr be all of the distinct prime numbers that divide n or a or b. Then there are nonnegative
integers e1,...,€g, f1,++s [y G1,...,gx > 0 such that

a:pil...p?@, b:pfl..,pik, and n:p‘gl”.pik.

Since y/n = a/b, multiplying by b and squaring gives b?>n = a2, and hence

2 2 2 2
p1f1+91 . ‘pkfk‘f'gk _ p161 . 'pkek'
By the uniqueness of prime factorizations, then, we have 2f; + g; = 2e; for every ¢ = 1,..., k, and hence

9i = 2(e; — fi).
For each i, let h; = e; — f; € Z. We have h; = ¢;/2 > 0, so we may define

h h
m=p'---pl EN,

which satisfies

ex
3 B pytoep a
m = pi fl--'pi’“ fk:ﬁzgz\/ﬁ'

Thus \/n = m € N is an integer. QED



