
Math 220, Section 03, Fall 2025 Professor Rob Benedetto

Solutions to Homework #8

1. Section 2.3, #2
For this problem, you may give informal justifications (as opposed to formal proofs), but please mention
where and how you are using the pigeonhole principle or related logic.
How many cards must be dealt from a standard deck of cards to guarantee:

(a) a pair, i.e., (at least) two cards of the same rank?

(b) a pair of aces?

(c) (at least) two cards of the same suit?

(d) five cards of the same suit?

Solutions. (a) 14 cards There are m = 13 ranks, so for the pigeonhole principle to guarantee n cards
have two landing in the same rank, we need (at least) n = m+ 1 = 14.

(b) 50 cards There are 52−4 = 48 non-ace cards. Think of each of these 48 as being a single pigeonhole,
and then one more pigeonhole for all four aces, giving a total of m = 49 pigeonholes. So for the pigeonhole
principle to guarantee n cards have two landing in the same pigeonhole — and the only pigeonhole that
can get more than one card is the one for the aces — we need (at least) n = m+ 1 = 50.

Note: It’s OK to explain this without explicit mention of the pigeonhole principle, something like the
following. If one used only 49 or fewer cards, they could be all 48 non-aces, plus one of the aces, so 49
cards is not enough. But with 50 cards, there are only two left over, and those two leftovers can consist
of at most two aces. So at least 4− 2 = 2 aces must be among the 50 cards that were dealt.

(c) 5 cards There are m = 4 suits, so for the pigeonhole principle to guarantee n cards have two landing
in the same suit, we need (at least) n = m+ 1 = 5.

(d) 17 cards There are m = 4 suits, so for the strong pigeonhole principle to guarantee n cards have at
least k = 5 landing in the same suit, we need (at least) n = 1 +m(k − 1) = 17.

2. Section 2.3, #3(a,b,c)
For this problem, you may give informal justifications (as opposed to formal proofs), but please mention
where you and how are using the pigeonhole principle or related logic
A piggy bank contains 12 pennies, 8 nickels, 10 dimes, and 3 quarters. How many coins must be grabbed
from the bank to guarantee grabbing at least:

(a) 3 pennies?

(b) 3 coins of the same kind?

(c) 3 quarters?
Solutions. (a) 24 coins There are 8 + 10 + 3 = 21 non-pennies, and 12 + 21 = 33 total coins. If we
grab only 23 coins, they could be all 21 non-pennies and only 2 pennies. On the other hand, if we grab
24, then only 33 − 24 = 9 coins remain in the bank, so we must have grabbed all but at most 9 of the
pennies, i.e., we must have grabbed at least 12− 9 = 3 pennies.

(b) 9 coins There are m = 4 types of coins, so for the strong pigeonhole principle to guarantee n coins
include at least k = 3 of the same type, we need (at least) n = 1 +m(k − 1) = 9.

(c) 33 coins If we grab only 32 coins, it is possible that the one remaining coin is a quarter, in which
case we will not have all three. Conversely, if we grab all 33 coins, then in particular we will have grabbed
all three quarters.

3. Section 2.3, #7



For any set S ⊆ Z with |S| = 3, (i.e., for any set of three distinct integers), prove that S contains a pair
whose sum is even (i.e., there exist distinct m,n ∈ S such that m+ n is even).
Proof. Given such S thinking of “even” and “odd” as two pigeonholes, there are two different elements
m ̸= n ∈ S such that x and y are either both odd or both even.
If they are both odd, then there are integers a, b ∈ Z such that x = 2a + 1 and y = 2b + 1, so x + y =
2(a+ b+ 1) is even.
If they are both even, then there are integers a, b ∈ Z such that x = 2a and y = 2b, so x+ y = 2(a+ b)
is even. QED

4. Section 2.3, #9
Recall that the set Z× Z (of points in the plane both of whose coordinates are integers) is called the set
of lattice points in the plane. For any five lattice points (x1, y1), . . . , (x5, y5) ∈ Z× Z, prove that there is
a pair whose midpoint is also a lattice point.
Proof. There are four types of lattice points (x, y): those for which x and y are both even, those for
which they are both odd, those for which x is odd and y is even, and those for which x is even and y is
odd.
By the pigeonhole principle, there are two such points, WLOG (x1, y1) and (x2, y2), for which x1 and
x2 have the same parity, and y1 and y2 have the same parity. By the same argument as in the previous
problem, it follows that both x1 + x2 and y1 + y2 are even.
[Here’s that argument again: we have x1 = 2a+ i and x2 = 2b+ i for integers a, b, i with i being either 0
or 1, so x1 + x2 = 2(a+ b+ i) is even. Similarly for y1 + y2.]
So there are integers m,n ∈ Z such that x1 + x2 = 2m and y1 + y2 = 2n. Thus, the midpoint
(x1+x2

2 , y1+y+2
2 ) = (m,n) is a lattice point. QED

5. Section 3.1, Problems 3(b) and 4
(a) [#3b]: Let a, b, c, d be nonzero integers. Prove that if a|b and d|c, then (ad)|(bc)
(b) [#4]: Prove, or disprove via counterexample: Let a, b, c be nonzero integers.

If a|(bc), then a|b or a|c.
Proofs. (a): Given a, b, c, d ∈ Z nonzero with a|b and d|c, there exist integers m,n ∈ Z such that b = ma
and c = nd. Thus, bc = (ma)(nd) = (mn)(ad). Since mn ∈ Z, we have (ad)|(bc). QED

(b): This statement is false
To prove this, let a = 6 and b = 2 and c = 3. Then a|(bc), since bc = 6 = 1 · a is divisible by a, but
neither b = 2 nor c = 3 is divisible by a = 6. QED

Note 1: There aremany other counterexamples possible for part (b). The key is to pick a to be composite
(i.e., a ≥ 2 but not prime), with some of the factors of a dividing b, and the others dividing c.

Note 2: The answers and solutions to this problem are unchanged if we remove the restriction that
these integers are all nonzero. I just included that restriction because the book did; but the problem is
unchanged if we allow a, b, c, d to be any integers, including 0.

6. Section 3.1, #12(a,b,e,h)
For each of the following pairs of integers a and b, find the integers q, r ∈ Z such that b = qa + r and
0 ≤ r < |a|.

(a) a = 73, b = 25 (b) a = 25, b = 73 (e) a = 79, b = −17 (h) a = 13, b = −37

Solutions. (a): q = 0 and r = 25 since we have b = 25 = 0 · 73 + 25 with 0 ≤ 25 < |73|.

(b): q = 2 and r = 23 since we have b = 73 = 2 · 25 + 23 with 0 ≤ 23 < |25|.

(c): q = −1 and r = 62 since we have b = −17 = (−1) · 79 + 62 with 0 ≤ 62 < |79|.

(d): q = −3 and r = 2 since we have b = −37 = (−3) · 13 + 2 with 0 ≤ 2 < |13|.



7. Section 3.1, #26
Prove that for every n ∈ N, we have 6|(7n − 1)
Proof (Method 1). By induction on n ≥ 1.

Base Case: n = 1. Then 7n − 1 = 7− 1 = 6 is divisible by 6.

Inductive Step: For some particular n ≥ 1, suppose that 6|(7n − 1), so there is an integer m ∈ Z such
that 7n − 1 = 6m. Then

7n+1 − 1 = (7n+1 − 7n) + (7n − 1) = 7n · (7− 1) + 6m = 6(7n +m).

Since 7n +m ∈ Z, we have 6|(7n+1 − 1). QED

Proof (Method 2). Given n ≥ 1, let m = 1+7+72+ · · ·+7n−1, which is an integer because n− 1 ≥ 0,
and hence all the terms here are of the form 7i with i ≥ 0, and hence they are all integers. Then

6m = (7− 1)(1 + 7 + 72 + · · ·+ 7n−1) = 7 + 72 + · · ·+ 7n − 1− 7− · · · − 7n−1 = 7n − 1,

since for each i = 1, . . . , n−2, the term 7i appears once as +7i and once as −7i; and the only other terms
are 7n and −1. QED


