Math 220, Section 03, Fall 2025 Professor Rob Benedetto
Solutions to Homework #6

1. Section 2.1, #9
Let a,b,c € R, and let p(z) be the polynomial p(x) = az? + bz + c. Prove that p(1) = p(—1) if and only

if p(2) = p(-2).
Proof. (=) We have
atb+c=p(l)=p(-1)=a-b+c,

and hence (by adding —a + b — ¢ to both sides) we have 2b = 0, and therefore b = 0. Thus,

p(2) =4a+2b+c=4a+c=4a—2b+c=p(-2). QED (=)
(<) We have

da +2b+c=p(2) = p(—2) = 4a — 2b+c,
and hence (by adding —4a + 2b — ¢ to both sides) we have 4b = 0, and therefore b = 0. Thus,
p(l)=a+b+c=a+c=a—-b+c=p(-1). QED

2. Section 2.1, #12 Prove that for any integer n € Z, the number n3 + n is an even integer.
Proof. Given n € Z, we consider two cases.
Case 1: n is even. Then n = 2k for some k € Z.

So n3 +n = 8k3 + 2k = 2(4k® + k). Since 4k® + k € Z is an integer, we have that n3 + n is 2 times an
integer, and hence is even.

Case 2: n is not even, so n is odd. Then n = 2k + 1 for some k € Z.

Son®+n = (2k+1)3+(2k+1) = 8k +12k? +6k+1+ (2k+1) = 8k3+12k>+ 8k +2 = 2(4k3+6k>+4k+1).

Since 4k3 + 6k% + 4k 4+ 1 € Z is an integer, we have that n3 + n is 2 times an integer, and hence is even.
QED

3. Section 2.1, #15(a)

Let a € Z be an integer. Prove that a is a multiple of 3 if and only if ¢ may be written as the sum of
three consecutive integers.

Proof. Given a € Z arbitrary:

(=) Assuming a is a multiple of 3, there is an integer k € Z such that a = 3k. Then k — 1 and k and
k + 1 are three consecutive integers, and we have

(k—1)4+k+(k+1)=3k=a
(<) Assuming a is the sum of three consecutive integers, call those integers x, = + 1, and = + 2, with
r€Z. Let k=x+1¢€Z. Then

a=z+ (x+1)+ (x+2) =3z + 3 =3k,
S0 a is indeed a multiple of 3. QED

4. Section 2.1, #17
Let m,n € Z be integers. Prove that the following statements are equivalent:

(a) m? — n? is even. (b) m — n is even. (c) m? +n? is even.
Proof. (a)=-(b): Let’s prove the contrapositive. Suppose that m —n is not even, i.e., that m —n is odd.
Then there is an integer k € Z such that m — n = 2k + 1, or equivalently, m = n + 2k + 1. Hence,

m? —n? = (n+2k+1)? —n® =n? + 4kn 4 2n + 4k*> + 4k + 1 — n® = 2(2kn + n + 2k* 4+ 2k) + 1.

Since 2kn + n + 2k% + 2k € Z is an integer, we have that m? — n? is odd, completing our proof of the
contrapositive. QED (a)=(Db)



(b)=(c): Since m —n is even, there is an integer k € Z such that m —n = 2k, and hence that m = 2k +n.
Thus,
m? 4+ n? = (2k 4+ n)? +n? = 4k* 4 4kn + 2n% = 2(2k? + 2kn + n?).

Since 2k? + 2kn + n? € Z is an integer, we have that m? + n? is even. QED (b)=(c)
(c)=(a): Since m? + n? is even, there is an integer k € Z such that m? + n? = 2k. Thus,

m? —n? = (m? +n?) — 2n® = 2k — 2n% = 2(k — n?).

2 is even. QED (c)=(b)
QED

Since k — n? € Z is an integer, we have that m? —n

Note: There are lots of other ways to do this. For example, here’s an alternative proof that (a)=(b):

Since m? — n? is even, there is an integer k € Z such that m? — n? = 2k. Thus,

2k =m? —n? = (m —n)(m+n).

Since 2 is prime, this equality implies that either m — n is divisible by 2, or that m + n is divisible by 2.
We consider these two cases separately.

Case 1. m — n is divisible by 2. Then m — n is even, as desired.

Case 2. m + n is divisible by 2. Then there is an integer £ € Z such that m 4+ n = 2¢. Hence,
m—n=(m+n)—2n=20—2n=2({—n).
Since ¢ —n € Z is an integer, we have that m — n is even, as desired. QED (a)=(b)

Note, continued: And here’s a proof going in the opposite direction of implications:

(b) = (a): Since m — n is even, there exists k € Z such that m —n = 2k.

So m? —n? = (m —n)(m +n) = 2k(m + n).

Since k(m +n) € Z, we have that m? — n? is even. QED (b)=(a)

(a)=(c): Since m? — n? is even, there exists k € Z such that m? — n? = 2k.

So m? +n? =m? — n? + 2n? =2k + 2n? = 2(k + n?).

Since k + n? € Z, we have that m? + n? is even. QED (a)=(c)
(c)=(b): Since m? + n? is even, there exists k € Z such that m? 4+ n? = 2k.

So (m —n)? = m? — 2mn + n? = 2k — 2mn = 2(k — mn).

Since k — mn € Z, we have that (m — n)? is even. But then, since (m — n)? is even, we have by
Theorem 2.1.9(b) that m — n is even. QED (c)=(a)
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5. Section 2.1, #5
Let A, B,C € Z be integers with A, B # 0, and let L be the line {(z,y) € R?| Az + By = C}. Suppose
that L contains a lattice point. Prove that L contains infinitely many lattice points.

Proof. The hypotheses state that there are integers xg, yo € Z such that the point (zg,yg) lies on L. In
particular, we have Axg + Byy = C.

For each integer n € Z, let z,, = 9 + Bn € Z, and let y, = yo — An € Z. So (zy,yy) is a lattice point.

In addition, for any two integers m,n € Z, if (X, ym) = (Tn,yn) are the same point, then
xro+ Bm=1x90+ Bn and yg— Am = yy— An,

and hence B(m —n) = 0 and A(m —n) = 0. Since at least one of A, B is nonzero, it follows that
m —n = 0, and hence m = n. Thus, we have produced infinitely many lattice points {(x,,yn) |n € Z}.

Finally, for each n € Z, we have

Axy, + By, = A(zo + Bn) + B(yo — An) = Azg + Byp+ ABn— ABn=C +0=C,



so that each (x,,y,) is indeed a point on the line L. QED

6. Section 2.1, #8(a)
For any = € R, let |x| denote the greatest integer that is less than or equal to x. Prove that for all
z,y € R, we have |z| + |y| < [z +y] < =] + |y] + 1.

Proof. Given any z,y € R, let m = |z| and n = |y| so that m,n € Z with m < x < m + 1 and
n<y<n+4l.

So m + n is an integer, and m +n < z +y. Thus, |z + y| > m + n, since |z + y| is the largest integer
that is less than or equal to x + y, and m + n is an integer that is less than or equal to = + y. Hence,

lz] + y] =m+n < [z +y),

proving the first desired inequality.

In addition, we have
lz+yl<z+y<(m+1)+n+1)=m+n+2.

Since the integer |x + y| is strictly less than the integer m + n + 2, we must have
[z+yl<(m+n+2)—1l=m+n+1=|z]+|y]+1,

proving the second desired inequality. QED



