
Math 220, Section 03, Fall 2025 Professor Rob Benedetto

Solutions to Homework #6

1. Section 2.1, #9
Let a, b, c ∈ R, and let p(x) be the polynomial p(x) = ax2 + bx+ c. Prove that p(1) = p(−1) if and only
if p(2) = p(−2).

Proof. (⇒) We have
a+ b+ c = p(1) = p(−1) = a− b+ c,

and hence (by adding −a+ b− c to both sides) we have 2b = 0, and therefore b = 0. Thus,

p(2) = 4a+ 2b+ c = 4a+ c = 4a− 2b+ c = p(−2). QED (⇒)

(⇐) We have
4a+ 2b+ c = p(2) = p(−2) = 4a− 2b+ c,

and hence (by adding −4a+ 2b− c to both sides) we have 4b = 0, and therefore b = 0. Thus,

p(1) = a+ b+ c = a+ c = a− b+ c = p(−1). QED

2. Section 2.1, #12 Prove that for any integer n ∈ Z, the number n3 + n is an even integer.

Proof. Given n ∈ Z, we consider two cases.

Case 1: n is even. Then n = 2k for some k ∈ Z.
So n3 + n = 8k3 + 2k = 2(4k3 + k). Since 4k3 + k ∈ Z is an integer, we have that n3 + n is 2 times an
integer, and hence is even.

Case 2: n is not even, so n is odd. Then n = 2k + 1 for some k ∈ Z.
So n3+n = (2k+1)3+(2k+1) = 8k3+12k2+6k+1+(2k+1) = 8k3+12k2+8k+2 = 2(4k3+6k2+4k+1).
Since 4k3 + 6k2 + 4k + 1 ∈ Z is an integer, we have that n3 + n is 2 times an integer, and hence is even.

QED

3. Section 2.1, #15(a)
Let a ∈ Z be an integer. Prove that a is a multiple of 3 if and only if a may be written as the sum of
three consecutive integers.

Proof. Given a ∈ Z arbitrary:
(⇒) Assuming a is a multiple of 3, there is an integer k ∈ Z such that a = 3k. Then k − 1 and k and
k + 1 are three consecutive integers, and we have

(k − 1) + k + (k + 1) = 3k = a

(⇐) Assuming a is the sum of three consecutive integers, call those integers x, x + 1, and x + 2, with
x ∈ Z. Let k = x+ 1 ∈ Z. Then

a = x+ (x+ 1) + (x+ 2) = 3x+ 3 = 3k,
so a is indeed a multiple of 3. QED

4. Section 2.1, #17
Let m,n ∈ Z be integers. Prove that the following statements are equivalent:

(a) m2 − n2 is even. (b) m− n is even. (c) m2 + n2 is even.

Proof. (a)⇒(b): Let’s prove the contrapositive. Suppose that m−n is not even, i.e., that m−n is odd.
Then there is an integer k ∈ Z such that m− n = 2k + 1, or equivalently, m = n+ 2k + 1. Hence,

m2 − n2 = (n+ 2k + 1)2 − n2 = n2 + 4kn+ 2n+ 4k2 + 4k + 1− n2 = 2(2kn+ n+ 2k2 + 2k) + 1.

Since 2kn + n + 2k2 + 2k ∈ Z is an integer, we have that m2 − n2 is odd, completing our proof of the
contrapositive. QED (a)⇒(b)



(b)⇒(c): Since m−n is even, there is an integer k ∈ Z such that m−n = 2k, and hence that m = 2k+n.
Thus,

m2 + n2 = (2k + n)2 + n2 = 4k2 + 4kn+ 2n2 = 2(2k2 + 2kn+ n2).

Since 2k2 + 2kn+ n2 ∈ Z is an integer, we have that m2 + n2 is even. QED (b)⇒(c)

(c)⇒(a): Since m2 + n2 is even, there is an integer k ∈ Z such that m2 + n2 = 2k. Thus,

m2 − n2 = (m2 + n2)− 2n2 = 2k − 2n2 = 2(k − n2).

Since k − n2 ∈ Z is an integer, we have that m2 − n2 is even. QED (c)⇒(b)
QED

Note: There are lots of other ways to do this. For example, here’s an alternative proof that (a)⇒(b):
Since m2 − n2 is even, there is an integer k ∈ Z such that m2 − n2 = 2k. Thus,

2k = m2 − n2 = (m− n)(m+ n).

Since 2 is prime, this equality implies that either m− n is divisible by 2, or that m+ n is divisible by 2.
We consider these two cases separately.

Case 1. m− n is divisible by 2. Then m− n is even, as desired.

Case 2. m+ n is divisible by 2. Then there is an integer ℓ ∈ Z such that m+ n = 2ℓ. Hence,

m− n = (m+ n)− 2n = 2ℓ− 2n = 2(ℓ− n).

Since ℓ− n ∈ Z is an integer, we have that m− n is even, as desired. QED (a)⇒(b)

Note, continued: And here’s a proof going in the opposite direction of implications:
(b) ⇒ (a): Since m− n is even, there exists k ∈ Z such that m− n = 2k.
So m2 − n2 = (m− n)(m+ n) = 2k(m+ n).
Since k(m+ n) ∈ Z, we have that m2 − n2 is even. QED (b)⇒(a)

(a)⇒(c): Since m2 − n2 is even, there exists k ∈ Z such that m2 − n2 = 2k.
So m2 + n2 = m2 − n2 + 2n2 = 2k + 2n2 = 2(k + n2).
Since k + n2 ∈ Z, we have that m2 + n2 is even. QED (a)⇒(c)

(c)⇒(b): Since m2 + n2 is even, there exists k ∈ Z such that m2 + n2 = 2k.
So (m− n)2 = m2 − 2mn+ n2 = 2k − 2mn = 2(k −mn).
Since k − mn ∈ Z, we have that (m − n)2 is even. But then, since (m − n)2 is even, we have by
Theorem 2.1.9(b) that m− n is even. QED (c)⇒(a)

5. Section 2.1, #5
Let A,B,C ∈ Z be integers with A,B ̸= 0, and let L be the line {(x, y) ∈ R2 |Ax+ By = C}. Suppose
that L contains a lattice point. Prove that L contains infinitely many lattice points.

Proof. The hypotheses state that there are integers x0, y0 ∈ Z such that the point (x0, y0) lies on L. In
particular, we have Ax0 +By0 = C.

For each integer n ∈ Z, let xn = x0 +Bn ∈ Z, and let yn = y0 −An ∈ Z. So (xn, yn) is a lattice point.

In addition, for any two integers m,n ∈ Z, if (xm, ym) = (xn, yn) are the same point, then

x0 +Bm = x0 +Bn and y0 −Am = y0 −An,

and hence B(m − n) = 0 and A(m − n) = 0. Since at least one of A,B is nonzero, it follows that
m− n = 0, and hence m = n. Thus, we have produced infinitely many lattice points {(xn, yn) |n ∈ Z}.

Finally, for each n ∈ Z, we have

Axn +Byn = A(x0 +Bn) +B(y0 −An) = Ax0 +By0 +ABn−ABn = C + 0 = C,



so that each (xn, yn) is indeed a point on the line L. QED

6. Section 2.1, #8(a)
For any x ∈ R, let ⌊x⌋ denote the greatest integer that is less than or equal to x. Prove that for all
x, y ∈ R, we have ⌊x⌋+ ⌊y⌋ ≤ ⌊x+ y⌋ ≤ ⌊x⌋+ ⌊y⌋+ 1.

Proof. Given any x, y ∈ R, let m = ⌊x⌋ and n = ⌊y⌋ so that m,n ∈ Z with m ≤ x < m + 1 and
n ≤ y < n+ 1.

So m + n is an integer, and m + n ≤ x + y. Thus, ⌊x+ y⌋ ≥ m + n, since ⌊x + y⌋ is the largest integer
that is less than or equal to x+ y, and m+ n is an integer that is less than or equal to x+ y. Hence,

⌊x⌋+ ⌊y⌋ = m+ n ≤ ⌊x+ y⌋,

proving the first desired inequality.

In addition, we have
⌊x+ y⌋ ≤ x+ y < (m+ 1) + (n+ 1) = m+ n+ 2.

Since the integer ⌊x+ y⌋ is strictly less than the integer m+ n+ 2, we must have

⌊x+ y⌋ ≤ (m+ n+ 2)− 1 = m+ n+ 1 = ⌊x⌋+ ⌊y⌋+ 1,

proving the second desired inequality. QED


