Solutions to Homework #6

1. Section 2.1, #9

Let $a, b, c \in \mathbb{R}$, and let p(x) be the polynomial $p(x) = ax^2 + bx + c$. Prove that p(1) = p(-1) if and only if p(2) = p(-2).

Proof. (\Rightarrow) We have

$$a + b + c = p(1) = p(-1) = a - b + c$$

and hence (by adding -a+b-c to both sides) we have 2b=0, and therefore b=0. Thus,

$$p(2) = 4a + 2b + c = 4a + c = 4a - 2b + c = p(-2).$$
 QED (\Rightarrow)

 (\Leftarrow) We have

$$4a + 2b + c = p(2) = p(-2) = 4a - 2b + c,$$

and hence (by adding -4a + 2b - c to both sides) we have 4b = 0, and therefore b = 0. Thus,

$$p(1) = a + b + c = a + c = a - b + c = p(-1).$$
 QED

2. Section 2.1, #12 Prove that for any integer $n \in \mathbb{Z}$, the number $n^3 + n$ is an even integer.

Proof. Given $n \in \mathbb{Z}$, we consider two cases.

Case 1: n is even. Then n = 2k for some $k \in \mathbb{Z}$.

So $n^3 + n = 8k^3 + 2k = 2(4k^3 + k)$. Since $4k^3 + k \in \mathbb{Z}$ is an integer, we have that $n^3 + n$ is 2 times an integer, and hence is even.

Case 2: n is not even, so n is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$.

So $n^3 + n = (2k+1)^3 + (2k+1) = 8k^3 + 12k^2 + 6k + 1 + (2k+1) = 8k^3 + 12k^2 + 8k + 2 = 2(4k^3 + 6k^2 + 4k + 1)$. Since $4k^3 + 6k^2 + 4k + 1 \in \mathbb{Z}$ is an integer, we have that $n^3 + n$ is 2 times an integer, and hence is even. QED

3. Section 2.1, #15(a)

Let $a \in \mathbb{Z}$ be an integer. Prove that a is a multiple of 3 if and only if a may be written as the sum of three consecutive integers.

Proof. Given $a \in \mathbb{Z}$ arbitrary:

 (\Rightarrow) Assuming a is a multiple of 3, there is an integer $k \in \mathbb{Z}$ such that a = 3k. Then k - 1 and k and k + 1 are three consecutive integers, and we have

$$(k-1) + k + (k+1) = 3k = a$$

(\Leftarrow) Assuming a is the sum of three consecutive integers, call those integers x, x+1, and x+2, with $x \in \mathbb{Z}$. Let $k = x+1 \in \mathbb{Z}$. Then

$$a = x + (x + 1) + (x + 2) = 3x + 3 = 3k$$

so a is indeed a multiple of 3.

QED

4. Section 2.1, #17

Let $m, n \in \mathbb{Z}$ be integers. Prove that the following statements are equivalent:

(a)
$$m^2 - n^2$$
 is even.

(b)
$$m-n$$
 is even.

(c)
$$m^2 + n^2$$
 is even.

Proof. (a) \Rightarrow (b): Let's prove the contrapositive. Suppose that m-n is not even, i.e., that m-n is odd. Then there is an integer $k \in \mathbb{Z}$ such that m-n=2k+1, or equivalently, m=n+2k+1. Hence,

$$m^2 - n^2 = (n + 2k + 1)^2 - n^2 = n^2 + 4kn + 2n + 4k^2 + 4k + 1 - n^2 = 2(2kn + n + 2k^2 + 2k) + 1.$$

Since $2kn + n + 2k^2 + 2k \in \mathbb{Z}$ is an integer, we have that $m^2 - n^2$ is odd, completing our proof of the contrapositive. QED (a) \Rightarrow (b)

(b) \Rightarrow (c): Since m-n is even, there is an integer $k \in \mathbb{Z}$ such that m-n=2k, and hence that m=2k+n. Thus,

$$m^{2} + n^{2} = (2k + n)^{2} + n^{2} = 4k^{2} + 4kn + 2n^{2} = 2(2k^{2} + 2kn + n^{2}).$$

Since $2k^2 + 2kn + n^2 \in \mathbb{Z}$ is an integer, we have that $m^2 + n^2$ is even. QED (b) \Rightarrow (c)

(c) \Rightarrow (a): Since $m^2 + n^2$ is even, there is an integer $k \in \mathbb{Z}$ such that $m^2 + n^2 = 2k$. Thus,

$$m^2 - n^2 = (m^2 + n^2) - 2n^2 = 2k - 2n^2 = 2(k - n^2).$$

Since $k - n^2 \in \mathbb{Z}$ is an integer, we have that $m^2 - n^2$ is even. QED (c) \Rightarrow (b) QED

Note: There are lots of other ways to do this. For example, here's an alternative proof that (a) \Rightarrow (b): Since $m^2 - n^2$ is even, there is an integer $k \in \mathbb{Z}$ such that $m^2 - n^2 = 2k$. Thus,

$$2k = m^2 - n^2 = (m - n)(m + n).$$

Since 2 is prime, this equality implies that either m-n is divisible by 2, or that m+n is divisible by 2. We consider these two cases separately.

Case 1. m-n is divisible by 2. Then m-n is even, as desired.

Case 2. m+n is divisible by 2. Then there is an integer $\ell \in \mathbb{Z}$ such that $m+n=2\ell$. Hence,

$$m-n = (m+n) - 2n = 2\ell - 2n = 2(\ell - n).$$

Since $\ell - n \in \mathbb{Z}$ is an integer, we have that m - n is even, as desired.

QED (a) \Rightarrow (b)

Note, **continued**: And here's a proof going in the opposite direction of implications:

(b) \Rightarrow (a): Since m-n is even, there exists $k \in \mathbb{Z}$ such that m-n=2k.

So $m^2 - n^2 = (m - n)(m + n) = 2k(m + n)$.

Since $k(m+n) \in \mathbb{Z}$, we have that $m^2 - n^2$ is even. QED (b) \Rightarrow (a)

(a) \Rightarrow (c): Since $m^2 - n^2$ is even, there exists $k \in \mathbb{Z}$ such that $m^2 - n^2 = 2k$. So $m^2 + n^2 = m^2 - n^2 + 2n^2 = 2k + 2n^2 = 2(k + n^2)$.

Since $k + n^2 \in \mathbb{Z}$, we have that $m^2 + n^2$ is even. QED (a) \Rightarrow (c)

(c) \Rightarrow (b): Since $m^2 + n^2$ is even, there exists $k \in \mathbb{Z}$ such that $m^2 + n^2 = 2k$.

So $(m-n)^2 = m^2 - 2mn + n^2 = 2k - 2mn = 2(k-mn)$.

Since $k-mn \in \mathbb{Z}$, we have that $(m-n)^2$ is even. But then, since $(m-n)^2$ is even, we have by QED (c) \Rightarrow (a) Theorem 2.1.9(b) that m-n is even.

5. Section 2.1, #5

Let $A, B, C \in \mathbb{Z}$ be integers with $A, B \neq 0$, and let L be the line $\{(x, y) \in \mathbb{R}^2 \mid Ax + By = C\}$. Suppose that L contains a lattice point. Prove that L contains infinitely many lattice points.

Proof. The hypotheses state that there are integers $x_0, y_0 \in \mathbb{Z}$ such that the point (x_0, y_0) lies on L. In particular, we have $Ax_0 + By_0 = C$.

For each integer $n \in \mathbb{Z}$, let $x_n = x_0 + Bn \in \mathbb{Z}$, and let $y_n = y_0 - An \in \mathbb{Z}$. So (x_n, y_n) is a lattice point.

In addition, for any two integers $m, n \in \mathbb{Z}$, if $(x_m, y_m) = (x_n, y_n)$ are the same point, then

$$x_0 + Bm = x_0 + Bn$$
 and $y_0 - Am = y_0 - An$,

and hence B(m-n)=0 and A(m-n)=0. Since at least one of A, B is nonzero, it follows that m-n=0, and hence m=n. Thus, we have produced infinitely many lattice points $\{(x_n,y_n)\mid n\in\mathbb{Z}\}$.

Finally, for each $n \in \mathbb{Z}$, we have

$$Ax_n + By_n = A(x_0 + Bn) + B(y_0 - An) = Ax_0 + By_0 + ABn - ABn = C + 0 = C,$$

6. Section 2.1, #8(a)

For any $x \in \mathbb{R}$, let $\lfloor x \rfloor$ denote the greatest integer that is less than or equal to x. Prove that for all $x, y \in \mathbb{R}$, we have $\lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor \leq \lfloor x \rfloor + \lfloor y \rfloor + 1$.

Proof. Given any $x, y \in \mathbb{R}$, let $m = \lfloor x \rfloor$ and $n = \lfloor y \rfloor$ so that $m, n \in \mathbb{Z}$ with $m \leq x < m+1$ and $n \leq y < n+1$.

So m+n is an integer, and $m+n \le x+y$. Thus, $\lfloor x+y \rfloor \ge m+n$, since $\lfloor x+y \rfloor$ is the *largest* integer that is less than or equal to x+y, and m+n is an integer that is less than or equal to x+y. Hence,

$$\lfloor x \rfloor + \lfloor y \rfloor = m + n \le \lfloor x + y \rfloor,$$

proving the first desired inequality.

In addition, we have

$$|x+y| \le x+y < (m+1) + (n+1) = m+n+2.$$

Since the integer $\lfloor x+y \rfloor$ is strictly less than the integer m+n+2, we must have

$$|x+y| \le (m+n+2) - 1 = m+n+1 = |x| + |y| + 1,$$

proving the second desired inequality.

QED