Solutions to Homework #2

1. Section 1.1, Problem 2 (4 points): Which has the larger cardinality? The set of letters in the word MISSISSIPPI or the set of letters in the word FLORIDA?

Solution. The set for FLORIDA is larger. The set for MISSISSIPPI is $\{M, I, S, P\}$, which has cardinality 4, but The set for FLORIDA is $\{F, L, O, R, I, D, A\}$, which has cardinality 7 > 4.

Remember, of course, that we don't do repeats with elements of set; an object is either in the set or not, period.

- 2. Section 1.1, Problem 10(b(iv-ix)) (24 points): For each $k \in \{1, 2, \dots, 20\}$, let
- $D_k = \{x \mid x \text{ is a prime dividing } k\}$. Let $\mathcal{D} = \{D_k | k = 1, 2, \dots, 20\}$. True or false (and briefly justify):
 - (iv) $\varnothing \in \mathcal{D}$
- $(v) \varnothing \subseteq \mathcal{D}$
- (vi) $5 \in \mathcal{D}$

- (vii) $\{5\} \in \mathcal{D}$
- (viii) $\{4,5\} \in \mathcal{D}$
- (ix) $\{\{3\}\}\subseteq \mathcal{D}$

Solution. (iv): True We have $D_1 = \emptyset$ (because no primes divide 1), so $\emptyset = D_1 \in \mathcal{D}$.

- (v): True We have $\varnothing \subseteq \mathcal{D}$ because all elements of \varnothing (all none of them) are in \mathcal{D} . But $\{5\} = D_5 \in \mathcal{D}$ but $\{5\} \notin \emptyset$. So $\emptyset \subseteq \mathcal{D}$
- (vi): False Every element of \mathcal{D} is a set of numbers, but 5 is merely a number, not a set of numbers. So $5 \notin \mathcal{D}$.
- (vii): True As noted in (v), we have $\{5\} = D_5 \in \mathcal{D}$.
- (viii): False Every element of \mathcal{D} is a set of *prime* numbers. Although $\{4,5\}$ is a set of *numbers*, 4 is not prime, so $\{4,5\} \notin \mathcal{D}$.
- (ix): True We have $D_3 = \{3\}$, so $\{3\} \in \mathcal{D}$. Therefore, the set $\{\{3\}\}$, i.e., the set consisting of the one element $\{3\}$ [which happens to be a set], is *contained* in \mathcal{D} .
- 3. Section 1.2, Problem 4(a,b,d,h,m,n) (18 points) Let U be the set of 52 cards in a standard deck. Let S, D, A, K be the sets of spades, diamonds, aces, and kings, respectively. Say which cards belong to each set below, and find the cardinality of each set. (And briefly justify.)
 - (a) $A \cap D$

- (b) $S \cap D$
- (d) $(A \cup K) \cap (S \cup D)$
- $\text{(h)} \quad K \cap [(S \cup D)^c] \qquad \qquad \text{(m)} \quad S \smallsetminus K \qquad \qquad \text{(n)} \quad K \smallsetminus S$

Solution. (a): $A \cap D$ consists of only the ace of diamonds. The cardinality is $|A \cap D| = 1$

- (b): $S \cap D = \emptyset$ is the empty set, because there are no cards that are both spades and diamonds. The cardinality is $|S \cap D| = 0$
- (d): $(A \cup K) \cap (S \cup D)$ consists of the ace and king of spades, and the ace and king of diamonds

The cardinality is $||(A \cup K) \cap (S \cup D)| = 4|$ since there are two cards (ace and king) from each of the two suits (spades and diamonds).

(h): $K \cap [(S \cup D)^c]$ consists of the king of hearts and king of clubs

This is because $(S \cup D)^c$ consists of all cards that are not spades or diamonds, i.e., the clubs and hearts. Intersecting with the set of kings gives the set described above. The cardinality is $|K \cap (S \cup D)^c| = 2$

(m): $S \setminus K$ consists of all spades besides the king which has cardinality $|S \setminus K| = 12$

- (n): $K \setminus S$ consists of all kings that are not spades, i.e., the kings of hearts, diamonds, and clubs which has cardinality $|K \setminus S| = 3$
- 4. Section 1.2, Problem 7(b), first two parts (6 points): Determine whether the sets in this collection are mutually disjoint. Also determine whether the collection is nested. (And of course, briefly justify everything!)

$$\mathcal{B} = \left\{ \left(-\frac{1}{n}, n \right) \middle| n \in \mathbb{N} \right\}$$

Solution. The sets are not mutually disjoint because two of them intersect: $(-1,1) \cap (-\frac{1}{2},2) \neq \emptyset$ because it contains 0.

[Yes, it's true that all of the sets intersect, since they all contain 0, but to verify they are not mutually disjoint, it's required only to find two whose intersection is nonempty.]

No, the collection is not nested because

$$(-1,1) \not\subseteq \left(-\frac{1}{2},2\right) \text{ since } -\frac{1}{2} \in (-1,1) \setminus \left(-\frac{1}{2},2\right)$$

and

$$(-1,1)\not\supseteq\left(\,-\frac{1}{2},2\right)$$
 since $\frac{3}{2}\in\left(\,-\frac{1}{2},2\right)\smallsetminus(-1,1)$

[Again, yes, it's true that no set in this collection contains any other, but to verify that they are not nested, it's required only to find two for which neither contains the other.]

- 5. Section 1.2, Problem 7(b), last two parts (16 points): Find the union of the sets in the collection \mathcal{B} above. Also find the intersection of the sets in \mathcal{B} . In both cases, say what the set is and also **prove** the equality of sets you are claiming.
- **Solution**. Let $U = \bigcup_{S \in \mathcal{B}} S$ be the union, and $V = \bigcap_{S \in \mathcal{B}} S$ be the intersection.

Claim 1: The union U of the sets in \mathcal{B} is $(-1, \infty)$

Proof that $U = (-1, \infty)$:

 (\subseteq) : Given $x \in U$, we have $x \in (-\frac{1}{n}, n)$ for some $n \in \mathbb{N}$. Then

$$-1 \le -\frac{1}{n} < x < n < \infty,$$

so $x \in (-1, \infty)$.

 (\supseteq) : Given $x \in (-1, \infty)$, we consider two cases.

If x < 0, then $x \in (-1,1) \subseteq U$. [This is because (-1,1) is one of the sets $S \in \mathcal{B}$, for n = 1.]

Otherwise, we have $x \ge 0$. There is an integer $n \in \mathbb{N}$ such that $0 \le x < n$, and hence $x \in (-\frac{1}{n}, n) \subseteq U$. QED Claim 1

Claim 2: The intersection V of the sets in \mathcal{B} is [0,1)

Proof that V = [0, 1):

(\subseteq): Given $x \in V$, we have $x \ge -\frac{1}{n}$ for every $n \in \mathbb{N}$. Therefore, $x \ge 0$.

In addition, $x \in V \subseteq (-1,1)$ because (-1,1) is one of the sets in \mathcal{B} , so x < 1. Thus, $x \in [0,1)$.

 (\supseteq) : Given $x \in [0,1)$, then for every $n \in \mathbb{N}$, we have

$$-\frac{1}{n} < 0 \le x < 1 \le n,$$

so $x \in (-\frac{1}{n}, n)$ for every $n \in \mathbb{N}$. Hence $x \in V$.

- 6. Section 1.2, Problem 8(d,e) (8 points): Determine whether the following statements are true or false, and briefly justify.
 - (d): $\mathcal{B} \subseteq \mathcal{A}$, where \mathcal{B} is as in the previous problem, and $\mathcal{A} = \{(\frac{1}{n}, n+1) \mid n \in \mathbb{N}\}$
 - (e): $C \subseteq \mathcal{D}$, where $C = \{(n, \infty) \mid n \in \mathbb{N}\}$ and $\mathcal{D} = \{(x, \infty) \mid x \in \mathbb{R}\}$

Solution. (d): False because $(-1,1) \in \mathcal{B}$ (using n=1) but $(-1,1) \notin \mathcal{A}$ (because the left endpoint of each interval in \mathcal{A} is positive, not negative).

[Note: In fact, none of the elements of \mathcal{B} is an element of \mathcal{A} . But to prove $\mathcal{B} \not\subseteq \mathcal{A}$, we only need to come up with one element of \mathcal{B} that is not in \mathcal{A} .]

(e): True

Any element U of \mathcal{C} is of the form $U=(n,\infty)$ for some $n\in\mathbb{N}$. Therefore, since $n\in\mathbb{R}$, we have that $U\in\mathcal{D}$. So $\mathcal{C}\subseteq\mathcal{D}$, as claimed.