Solutions to Homework #19

1. Section 8.5, #4, variant: Let $(a_n)_{n=1}^{\infty}$ be a real sequence such that the associated series $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\lim_{n\to\infty} a_n = 0$.

Proof, Method 1. For each
$$k \in \mathbb{N}$$
, let $s_k = a_1 + \cdots + a_k$. Let $S = \lim_{n \to \infty} s_n = \sum_{n=1}^{\infty} a_n$.

Given $\varepsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that for all $n \geq N_1$, we have $|s_n - S| < \varepsilon/2$.

Let $N = N_1 + 1$. Given $n \ge N$, we have $n, n - 1 \ge N_1$, and hence $|s_{n-1} - S| < \varepsilon/2$ and $|s_n - S| < \varepsilon/2$. We also have $s_n = s_{n-1} + a_n$, and therefore

Proof, Method 2. For each
$$k \in \mathbb{N}$$
, let $s_k = a_1 + \cdots + a_k$. Let $S = \lim_{n \to \infty} s_n = \sum_{n=1}^{\infty} a_n$.

We claim that $\lim_{n\to\infty} s_{n-1} = S$ as well. To see this, given $\varepsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that for all $n \geq N_1$, we have $|s_n - S| < \varepsilon$.

Let $N = N_1 + 1 \in \mathbb{N}$. Given $n \geq N$, we have $n - 1 \geq N_1$, and hence $|s_{n-1} - S| < \varepsilon$, proving our claim.

Thus, by Theorem 8.3.9 [on the arithmetic of limits], we have

$$\lim_{n \to \infty} a_n = a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = S - S = 0.$$
 QED

2. Section 8.5, #6(b): Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be real sequences such that for all $n \in \mathbb{N}$, we have $0 \le b_n \le a_n$. If the series $\sum_{n=1}^{\infty} a_n$ converges, prove that the series $\sum_{n=1}^{\infty} b_n$ also converges.

Proof. For each $k \in \mathbb{N}$, let $s_k = \sum_{n=1}^k a_n$ and $t_k = \sum_{n=1}^k b_n$, the partial sums of the two series.

Let $L = \sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} s_k$, so that $L \in \mathbb{R}$ since this series converges by hypothesis.

Note that the sequences $(s_k)_{k=1}^{\infty}$ and $(t_k)_{k=1}^{\infty}$ are both increasing, because for every $k \geq 1$, we have $s_{k+1} = s_k + a_{k+1} \geq s_k$, since $s_{k+1} \geq 0$, and similarly $t_{k+1} = t_k + b_{k+1} \geq t_k$, since $b_{k+1} \geq 0$.

Note also that for every $k \in \mathbb{N}$, we have $s_k \leq L$, since

$$L - s_k = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{k} a_n = \sum_{n=k+1}^{\infty} a_n \ge \sum_{n=k+1}^{\infty} 0 = 0,$$

where the inequality is because $a_n \geq 0$ for every $n \in \mathbb{N}$.

It follows that for every $k \in \mathbb{N}$, we have

$$t_k = b_1 + b_2 + \dots + b_k \le a_1 + a_2 + \dots + a_k = s_k \le L.$$

Thus, $(t_k)_{k=1}^{\infty}$ is an increasing sequence that is bounded above. By the Monotone Sequence Theorem, the sequence $(t_k)_{k=1}^{\infty}$ converges. That is the series $\sum_{n=1}^{\infty} b_n$ converges. QED

Note: Here's an alternative proof that for every $k \in \mathbb{N}$, we have $s_k \leq L$:

Suppose not, i.e., that there is some m such that $s_m > L$. Let $\varepsilon = s_m - L > 0$. Then because $\lim_{k \to \infty} s_k = L$, there is some $N \in \mathbb{N}$ such that for all $k \ge N$, we have $|s_k - L| < \varepsilon$.

Let
$$k = \max(m, N)$$
. Then because $k \ge N$, we have

$$s_k = (s_k - L) + L \le |s_k - L| + L < \varepsilon + L = (s_m - L) + L = s_m$$

But because $k \geq m$ and the fact that $(s_k)_{k=1}^{\infty}$ is increasing, we have $s_k \geq s_m$, contradicting the above statement that $s_k < s_m$.

This contradiction proves our claim: for every $k \in \mathbb{N}$, we have $s_k \leq L$.

3. Section 6.3, #3(a): Prove that $|(0,\infty)| = |\mathbb{R}|$.

Proof. Define $f:(0,\infty)\to\mathbb{R}$ by $f(x)=\ln x$. And define $g:\mathbb{R}\to(0,\infty)$ by $g(t)=e^t$.

Note that for all $x \in (0, \infty)$, from high school math we know that $\ln x \in \mathbb{R}$ is indeed defined. Similarly, for all $t \in \mathbb{R}$, we also know that $e^t \in (0, \infty)$. Thus, f and g are indeed functions.

For any $x \in (0, \infty)$, we have $g(f(x)) = e^{\ln x} = x$, and for any $t \in \mathbb{R}$, we have $f(g(x)) = \ln(e^t) = t$. Thus, f and g are inverses of one another. In particular, $f:(0,\infty)\to\mathbb{R}$ is bijective, so $|(0,\infty)|=|\mathbb{R}|$. QED

Note: There are lots of other ways to do this. There's no need to use the base-e logarithm. If you prefer, $f(x) = \log_2 x$ and $g(t) = 2^t$ will also work; or $\log_{10} x$ and 10^t ; or in general $\log_a x$ and a^x for any constant a > 1.

One can also do this with a function like $f(x) = \frac{1}{x} - x$, which maps $(0, \infty)$ into \mathbb{R} and which one can prove is bijective, with inverse $g(t) = \frac{-t + \sqrt{t^2 + 4}}{2}$.

There are many other ways, too.

4. Section 6.3, #5(a): Let A, B be sets with |A| = |B|. Prove that $|\mathcal{P}(A)| = |\mathcal{P}(B)|$

Proof. By hypothesis, there is a bijective function $f: A \to B$, which has an inverse function $g = f^{-1}: B \to A$.

Define $F: \mathcal{P}(A) \to \mathcal{P}(B)$ by F(U) = f(U), and define $G: \mathcal{P}(B) \to \mathcal{P}(A)$ by G(V) = g(V),

[That is, for any subset $U \subseteq A$, define F(U) to be the subset of B that is the image f(U) of U under f. Define G similarly.]

For any $U \in \mathcal{P}(A)$, we have that $U \subseteq A$, and hence $f(U) \subseteq B$, i.e., $F(U) = f(U) \in \mathcal{P}(B)$. So F is indeed a function from $\mathcal{P}(A)$ to $\mathcal{P}(B)$. Similarly, G is indeed a function from $\mathcal{P}(B)$ to $\mathcal{P}(A)$.

For any $U \in \mathcal{P}(A)$, we have $G(F(U)) = g(f(U)) = g \circ f(U) = \mathrm{id}_A(U) = U$. That is, $G \circ F : \mathcal{P}(A) \to \mathcal{P}(A)$ is the identity function.

Similarly, for any $V \in \mathcal{P}(B)$, we have $F(G(V)) = f(g(V)) = f \circ g(V) = \mathrm{id}_B(V) = V$. That is, $F \circ G : \mathcal{P}(B) \to \mathcal{P}(B)$ is the identity function.

Hence, F is invertible (with inverse G) and hence bijective, so $|\mathcal{P}(A)| = |\mathcal{P}(B)|$. QED

Note: Alternatively, one could define only F but not G and prove that F is bijective directly. Here's a proof along those lines, after defining F as above:

- (1-1): Given $U_1, U_2 \in \mathcal{P}(A)$ with $F(U_1) = F(U_2)$, we claim that $U_1 = U_2$, which we now prove:
- (\subseteq): Given $x \in U_1$, we have $f(x) \in f(U_1) = F(U_1) = F(U_2) = f(U_2)$, so there is some $y \in U_2$ such that f(x) = f(y). But f is 1-1, so $x = y \in U_2$. QED (\subseteq)
- (⊇): Similar, with the roles of U_1 and U_2 swapped. QED (⊇) QED 1-1

(**onto**): Given $V \in \mathcal{P}(B)$, let $U = f^{-1}(V) \in \mathcal{P}(A)$. [That is, $U = \{x \in A \mid f(x) \in V\}$.] We claim that F(U) = V, as we now prove:

- (\subseteq): Given $y \in F(U) = f(U)$, there is some $x \in U$ such that y = f(x). By definition of $U = f^{-1}(V)$, then, we have $y = f(x) \in V$.
- (\supseteq): Given $y \in V$, then because f is onto, there is some $x \in A$ such that f(x) = y. Then $f(x) \in V$, so by definition of U, we have $x \in f^{-1}(V) = U$. So $y = f(x) \in f(U) = F(U)$. QED (\supseteq) QED onto

Thus, F is bijective, so $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.