Solutions to Homework #15

1. Section 8.1, #2

Give the first five terms, and the tenth term, of each of the following sequences:

- (a) $(a_n)_{n=-3}^{\infty}$ where $a_n = (-2)^n$
- (b) $(b_n)_{n=5}^{\infty}$ where $b_n = 12n 121$
- (c) $(c_n)_{n=-1}^{\infty}$ where $c_n = 2n^2 n + 1$

Solutions. (a): The first five terms are when n = -3, -2, -1, 0, 1, and the tenth is five terms later, when n = 6.

So the first five terms are $\left[-\frac{1}{8}, \frac{1}{4}, -\frac{1}{2}, 1, -2\right]$ and the tenth is $\boxed{64}$

(b): The first five terms are when n = 5, 6, 7, 8, 9, and the tenth is five terms later, when n = 14. So the first five terms are -61, -49, -37, -25, -13 and the tenth is $\boxed{47}$

(c): The first five terms are when n = -1, 0, 1, 2, 3, and the tenth is five terms later, when n = 8. So the first five terms are $\boxed{4, 1, 2, 7, 16}$ and the tenth is $\boxed{121}$

2. Section 8.1, #6 (a, c, d)

Let $(a_n)_{n=1}^{\infty}$ be the real sequence given by $a_n = 2n - 5$. For each function $f : \mathbb{N} \to \mathbb{N}$ below, find the sequence $(b_n)_{n=1}^{\infty}$ given by $b_n = a_{f(n)}$. Determine whether or not $(b_n)_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$. (And briefly explain why, of course.)

- (a) $f(n) = n^2$
- (c) $f(n) = \lfloor \frac{n}{2} \rfloor$
- (d) f(n) = |2n 7|

Solution/Proof. (a): We have $b_n = 2n^2 - 5$ for all $n \in \mathbb{N}$. Moreover, for every $n \in \mathbb{N}$, we have

$$(n+1)^2 = n^2 + 2n + 1 > n^2$$
, so $f(n) = n^2$ is strictly increasing.

Thus, \mathbf{yes} , $(b_n)_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$

(c): We have $b_n = 2\lfloor \frac{n}{2} \rfloor - 5$ for all $n \in \mathbb{N}$. However, we have

$$f(3) = \left\lfloor \frac{3}{2} \right\rfloor = 1 = \left\lfloor \frac{2}{2} \right\rfloor = f(2),$$

so $f(n) = \lfloor \frac{n}{2} \rfloor$ is **not** strictly increasing. Thus, $[\mathbf{no}, (b_n)_{n=1}^{\infty}]$ is **not** a subsequence of $(a_n)_{n=1}^{\infty}$

Alternative reason for (c): Another reason why (b_n) is not a subsequence is that when n = 1, we get $\lfloor \frac{n}{2} \rfloor = \lfloor \frac{1}{2} \rfloor = 0 \notin \mathbb{N}$.

(d): We have $b_n = 2|2n-7|-5$ for all $n \in \mathbb{N}$. Moreover, for every $n \in \mathbb{N}$, we have

$$f(2) = |2(2) - 7| = |-3| = 3 < 5 = |-5| = |2(1) - 7| = f(1),$$

so $f(n) = \lfloor \frac{n}{2} \rfloor$ is **not** strictly increasing. Thus, $\lceil \mathbf{no}, (b_n)_{n=1}^{\infty} \rceil$ is **not** a subsequence of $(a_n)_{n=1}^{\infty}$

3. Section 8.1, variant of #7

Prove that a real sequence $(a_n)_{n=1}^{\infty}$ is both geometric and arithmetic if and only if it is constant.

Proof. (\Rightarrow) By hypothesis, there are constants $a, r, b, c \in \mathbb{R}$ such that for every $n \in \mathbb{N}$, we have $a_n = ar^n$ and also $a_n = bn + c$.

We have $a_2 - a_1 = (2b + c) - (b + c) = b$ but also $a_2 - a_1 = ar^2 - ar = ar(r - 1)$. Thus, ar(r - 1) = b. Similarly $a_3 - a_2 = (3b + c) - (2b + c) = b$ but also $a_3 - a_2 = ar^3 - ar^2 = ar^2(r - 1)$. Thus, $ar^2(r - 1) = b$. Therefore, we have $ar^2(r - 1) = b = ar(r - 1)$, and hence $ar^2(r - 1) - ar(r - 1) = 0$, i.e., $ar(r - 1)^2 = 0$. It follows that either a = 0 or r = 0 or r = 1.

Case 1: a = 0. Then for all $n \in \mathbb{N}$, we have $a_n = ar^n = 0$, so the sequence is constant (since all terms are 0).

Case 2: r = 0. Then for all $n \in \mathbb{N}$, we have $a_n = ar^n = 0$, so the sequence is constant (since all terms are 0).

Case 3: r = 1. Then for all $n \in \mathbb{N}$, we have $a_n = ar^n = a$, so the sequence is constant (since all terms are a).

(\Leftarrow) Let $b = a_1$, so by assumption we have $a_n = c$ for all $n \in \mathbb{N}$. Define $r = 1 \in \mathbb{R}$ and $b = 0 \in \mathbb{R}$. Then for all $n \in \mathbb{N}$, we have

$$a_n = c = cr^n$$
, so (a_n) is geometric, and $a_n = bn + c$, so (a_n) is arithmetic. QED

4. Section 8.1, variant of #11

Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers, and let $(b_n)_{n=1}^{\infty}$ be a strictly increasing arithmetic sequence of positive integers, so that $(a_{b_n})_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$.

- (a) If $(a_n)_{n=1}^{\infty}$ is an arithmetic sequence, prove that the subsequence $(a_{b_n})_{n=1}^{\infty}$ is also arithmetic.
- (b) If $(a_n)_{n=1}^{\infty}$ is a geometric sequence, prove that the subsequence $(a_{b_n})_{n=1}^{\infty}$ is also geometric.

Proof. (a): Since $\{a_n\}$ is arithmetic, there are constants $s, t \in \mathbb{R}$ such that for all $n \in \mathbb{N}$, we have $a_n = sn + t$. Thus, for all $n \in \mathbb{N}$, we have $a_{b_n} = a_{kn+m} = s(kn+m) + t = (sk)n + (sm+t)$. Since sk and sm + t are real constants, it follows that $(a_{b_n})_{n=1}^{\infty}$ is an arithmetic sequence. QED (a)

(b): Since $\{a_n\}$ is geometric, there are constants $a, r \in \mathbb{R}$ such that for all $n \in \mathbb{N}$, we have $a_n = ar^n$. Thus, for all $n \in \mathbb{N}$, we have $a_{b_n} = a_{kn+m} = ar^{kn+m} = (ar^m) \cdot (r^k)^n$. Since ar^m and r^k are real constants, it follows that $(a_{b_n})_{n=1}^{\infty}$ is a geometric sequence. QED (b)

5. Section 8.1, variant of #12

Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers, and let $(b_n)_{n=1}^{\infty}$ be a strictly increasing geometric sequence of positive integers, so that $(a_{b_n})_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$.

If $(a_n)_{n=1}^{\infty}$ is a non-constant arithmetic sequence, prove that the subsequence $(a_{b_n})_{n=1}^{\infty}$ is definitely **not** arithmetic.

Proof. Since (a_n) is arithmetic, there are constants $c, d \in \mathbb{R}$ such that $a_n = cn + d$ for all $n \in \mathbb{N}$. Since (b_n) is geometric, there are constants $b, r \in \mathbb{R}$ such that $b_n = br^n$ for all $n \in \mathbb{N}$. Suppose, towards a contradiction, that (a_{b_n}) is arithmetic. Then $a_{b_3} - a_{b_2} = a_{b_2} - a_{b_1}$, so

$$cbr^{2}(r-1) = cbr^{3} - cbr^{2} = (cb_{3} + d) - (cb_{2} + d) = (cb_{2} + d) - (cb_{1} + d) = cbr^{2} - cbr = cbr(r-1).$$

Rearranging, we have $cbr^2(r-1) - cbr(r-1) = 0$, i.e., $cbr(r-1)^2 = 0$. Hence, one of these factors must be 0; we consider each case separately, as follows.

Case 1: c = 0. Then $a_n = d$ for all $n \in \mathbb{N}$, so that (a_n) is constant, a contradiction.

Case 2: b = 0. Then $b_n = 0$ for all $n \in \mathbb{N}$, so that (b_n) does not increase strictly, a contradiction.

Case 3: r = 0. Then $b_n = 0$ for all $n \in \mathbb{N}$, so that (b_n) does not increase strictly, a contradiction.

Case 4: r-1=0, so that r=1. Then $b_n=b$ for all $n \in \mathbb{N}$, so that (b_n) does not increase strictly, a contradiction.

Thus, in all cases, we have a contradiction. Therefore, our supposition must be false, and hence (a_{b_n}) is **not** arithmetic. QED