Solutions to Homework #14

1. Section 6.2, #4(a,b) For each of the following functions $f:A\to B$, decide whether or not it is invertible. If it is, find the inverse function.

(a):
$$A = B = \mathbb{R}$$
, and $f(x) = \frac{5x - 1}{3}$

(b):
$$A = \mathbb{R}$$
, $B = [-4, \infty)$, and $f(x) = (x - 3)^2 - 4$

Proof. (a): Yes, f is invertible and the inverse is $f^{-1}: \mathbb{R} \to \mathbb{R}$ by $f^{-1}(x) = \frac{3x+1}{5}$.

To prove this, first note that f^{-1} is indeed a function, since for any $x \in \mathbb{R}$, we have $(3x+1)/5 \in \mathbb{R}$. It remains to show the two compositions:

Given arbitrary $x \in A = \mathbb{R}$, we have

$$f^{-1}(f(x)) = f^{-1}\left(\frac{5x-1}{3}\right) = \frac{1}{5}\left[3\left(\frac{5x-1}{3}\right) + 1\right] = \frac{1}{5}\left[(5x-1) + 1\right] = \frac{1}{5}(5x) = x.$$

Next, given arbitrary $x \in B = \mathbb{R}$, we have

$$f(f^{-1}(x)) = f\left(\frac{3x+1}{5}\right) = \frac{1}{3}\left[5\left(\frac{3x+1}{5}\right) - 1\right] = \frac{1}{3}\left[(3x+1) - 1\right] = \frac{1}{3}(3x) = x.$$
 QED (a)

(b): No, f is not invertible because it is not 1-1. To see this, note that $4, 2 \in A = \mathbb{R}$ with $4 \neq 2$, but

$$f(4) = (4-3)^2 - 4 = -3 = (2-3)^2 - 4 = f(2).$$
 QED (b)

2. Section 6.2, #4(c), variant

Define
$$f: \mathbb{Z} \to \mathbb{N}$$
 by $f(n) = \begin{cases} 2n & \text{if } n \ge 1, \\ -2n+1 & \text{if } n \le 0. \end{cases}$

Prove that f is invertible, with inverse function $f^{-1}: \mathbb{N} \to \mathbb{Z}$ given by

$$f^{-1}(m) = \begin{cases} m/2 & \text{if } m \text{ is even,} \\ -(m-1)/2 & \text{if } m \text{ is odd.} \end{cases}$$

Proof. First, given arbitrary $n \in \mathbb{Z}$, we must show $f^{-1}(f(n)) = n$. We consider two cases:

Case 1: $n \ge 1$. Then

$$f^{-1}(f(n)) = f^{-1}(2n) = \frac{2n}{2} = n,$$

since 2n is an even integer.

Case 2: $n \leq 1$. Then $n \leq 0$, so

$$f^{-1}(f(n)) = f^{-1}(-2n+1) = -\frac{((-2n+1)-1)}{2} = -\left(\frac{-2n}{2}\right) = n,$$

since -2n+1 is an odd integer.

Second, given arbitrary $m \in \mathbb{N}$, we must show $f(f^{-1}(m)) = m$. We again consider two cases:

Case 1: m is even. Then

$$f(f^{-1}(m)) = f\left(\frac{m}{2}\right) = 2 \cdot \frac{m}{2} = m,$$

since $m \ge 2$, so $m/2 \ge 1$.

Case 2: m is odd. Then

$$f(f^{-1}(m)) = f\left(-\frac{(m-1)}{2}\right) = -2\left(-\frac{(m-1)}{2}\right) + 1 = (m-1) + 1 = m,$$

since $m \ge 1$, so $m - 1 \ge 0$, and hence $-(m - 1)/2 \le 0$.

3. Section 6.2, #6(a,b)

Let $g: \mathbb{R} \to \mathbb{Z}$ be the *ceiling function* $g(x) = \lceil x \rceil$, defined to be the smallest integer that is greater than or equal to x.

- (a) Prove that the image $g([-\pi, \pi])$ is $g([-\pi, \pi]) = \{-3, -2, -1, 0, 1, 2, 3, 4\}$.
- (b) Prove that the inverse image $g^{-1}(\{-2,-1\})$ is $g^{-1}(\{-2,-1\}) = (-3,-1]$

Proof. (a): (\subseteq): Given $y \in g([-\pi, \pi])$, there is some $x \in [-\pi, \pi]$ such that $y = g(x) = \lceil x \rceil$. Since $x \ge -\pi$, we have $y = \lceil x \rceil \ge \lceil -\pi \rceil = -3$. Similarly, since $x \le \pi$, we have $y = \lceil x \rceil \le \lceil \pi \rceil = 4$. Thus, $y \in \mathbb{Z}$ with $-3 \le y \le 4$, so $y \in RHS$ QED (\subseteq)

 (\supseteq) : Given $y \in RHS$, we consider two cases:

Case 1: y = 4. Then $y = \lceil \pi \rceil = g(\pi) \in g(\lceil -\pi, \pi \rceil)$, as desired.

Case 2: $y \neq 4$. Then $y \in \{-3, -2, -1, 0, 1, 2, 3\} = [-\pi, \pi] \cap \mathbb{Z}$. Thus, $y = [y] = g(y) \in g([-\pi, \pi])$. QED

(b): (\subseteq): Given $x \in g^{-1}(\{-2, -1\})$, we have $x \in \mathbb{R}$ and $g(x) \in \{-1, -2\}$, so we have two cases:

Case 1: If g(x) = -1, then $x \le \lceil x \rceil = -1$. We also have $x + 1 > \lceil x \rceil = -1$, and hence x > -2 > -3. Thus, $x \in (-3, -1]$.

Case 2: If g(x) = -2, then $x \le \lceil x \rceil = -2 \le -1$. We also have $x + 1 > \lceil x \rceil = -2$, and hence x > -3. Thus, $x \in (-3, -1]$.

 (\supseteq) : Given $x \in (-3, -1]$, we have $x \in \mathbb{R}$ with $-3 < x \le -1$. We consider two cases:

Case 1: If $x \le -2$, then $-3 < x \le -2$, and hence -2 is an integer $\ge x$, and it is the smallest such, since $-3 \ge x$. Thus, $g(x) = -2 \in \{-1, -2\}$, and hence $x \in g^{-1}(\{-2, -1\})$.

Case 2: Otherwise, $-2 < x \le -1$, and hence -1 is an integer $\ge x$, and it is the smallest such, since $-2 \ge x$. Thus, $g(x) = -1 \in \{-1, -2\}$, and hence $x \in g^{-1}(\{-2, -1\})$. QED

4. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = 2x^2 - 7$. Prove that:

(a)
$$f^{-1}([2,5)) = \left(-\sqrt{6}, -\frac{3}{\sqrt{2}}\right] \cup \left[\frac{3}{\sqrt{2}}, \sqrt{6}\right)$$

- (b) $f^{-1}((-10, -5]) = [-1, 1]$
- (c) f((-3,2)) = [-7,11)

Proof. (a): (\subseteq): Given $x \in f^{-1}([2,5))$, we have $x \in \mathbb{R}$ with $f(x) \in [2,5)$. That is, $2 \le 2x^2 - 7 < 5$, so $9 \le 2x^2 < 12$, and hence $9/2 \le x^2 < 6$. Taking square roots gives $3/\sqrt{2} \le |x| < \sqrt{6}$. Thus, $x \in \text{RHS}$. QED (\subseteq)

(\supseteq): Given $x \in \text{RHS}$, we have $3/\sqrt{2} \le |x| < \sqrt{6}$, so $9/2 \le x^2 < 6$. Hence, $9 \le 2x^2 < 12$, and so $2 \le 2x^2 - 7 < 5$. Thus, $x \in \mathbb{R}$ with $f(x) \in [2, 5)$, i.e., $x \in \text{LHS}$.

(b): (\subseteq): Given $x \in \text{LHS}$, we have $x \in \mathbb{R}$ with $f(x) \in (-10, -5]$. In particular $2x^2 - 7 \le -5$, so $2x^2 \le 2$, and hence $x^2 \le 1$. Thus, $-1 \le x \le 1$. That is, $x \in [-1, 1]$. QED (\subseteq)

(\supseteq): Given $x \in [-1, 1]$, we have $|x| \le 1$ and hence $x^2 \in [0, 1]$. Thus, $2x^2 \in [0, 2]$, and therefore $f(x) = 2x^2 - 7 \in [-7, -5] \subseteq (-10, -5]$. That is, $x \in LHS$. QED (b)

(c): (\subseteq): Given $y \in \text{LHS}$, there is some $x \in (-3,2)$ such that f(x) = y. Thus, $y = 2x^2 - 7 \ge 0 - 7 = -7$. On the other hand, since |x| < 3, we have $x^2 < 9$, and hence $y = 2x^2 - 7 < 18 - 7 = 11$. hence, $y \in [-7,11)$.

(\supseteq): Give $y \in [-7,11)$, let $x = -\sqrt{(y+7)/2}$. Note that x is defined, because $y \ge 7$, and hence $(y+7)/2 \ge 0$. In addition, since the square root function outputs nonnegative numbers, we have $x \le 0$. Also, (y+7)/2 < (11+7)/2 = 9, so that $\sqrt{(y+7)/2} < \sqrt{9} = 3$, and hence x > -3. Thus, $x \in (-3,0] \subseteq (-3,2)$. Therefore $y \in \text{LHS}$.