Solutions to Homework #13

- 1. (18 points) Let $X = \mathbb{R} \setminus \{5\}$ and $Y = \mathbb{R} \setminus \{2\}$. Define $f: X \to Y$ by $f(x) = \frac{2x-3}{x-5}$.
 - (a) (5 points): Prove that f is defined, i.e., for every $x \in X$, the value f(x) is defined and is in Y.
 - (b) (5 points): Prove that f is one-to-one.
 - (c) (8 points): Prove that f is onto.

Proof. (a): Given $x \in X$, then because $x \neq 5$, we have $x - 5 \neq 0$, and hence $f(x) = (2x - 3)/(x - 5) \in \mathbb{R}$. It remains to show that $f(x) \in Y$, i.e., that $f(x) \neq 2$.

Suppose, toward contradiction, that f(x) = 2. Then (2x - 3)/(x - 5) = 2, so 2x - 3 = 2(x - 5), i.e., 2x - 3 = 2x - 10, and hence 7 = 0, a contradiction. Thus, $f(x) \neq 2$, and hence $f(x) \in Y$. QED (a)

(b): Given
$$x_1, x_2 \in X$$
 such that $f(x_1) = f(x_2)$, we have $\frac{2x_1 - 3}{x_1 - 5} = \frac{2x_2 - 3}{x_2 - 5}$, and hence $(2x_1 - 3)(x_2 - 5) = (2x_2 - 3)(x_1 - 5)$. That is, $2x_1x_2 - 3x_2 - 10x_1 + 15 = 2x_1x_2 - 3x_1 - 10x_2 + 15$. Rearranging gives $7x_2 = 7x_1$, and hence $x_2 = x_1$.

(c): Given $y \in Y$, let $x = \frac{5y-3}{y-2}$, which is defined and in \mathbb{R} because $y \neq 2$. We claim that $x \neq 5$.

To see this, suppose not; then $\frac{5y-3}{y-2} = 5$, so 5y-3 = 5(y-2). Thus, 5y-3 = 5y-10, so that 7 = 0, a contradiction, proving our claim. That is, $x \in \mathbb{R} \setminus \{5\} = X$. Finally, we compute

$$f(x) = f\left(\frac{5y-3}{y-2}\right) = \frac{2\left(\frac{5y-3}{y-2}\right) - 3}{\left(\frac{5y-3}{y-2}\right) - 5} = \frac{2(5y-3) - 3(y-2)}{(5y-3) - 5(y-2)} = \frac{10y - 6 - 3y + 6}{5y - 3 - 5y + 10} = \frac{7y}{7} = y \quad \text{QED}$$

2. (5 points)

Let $f: A \to B$ be a function, and let $C \subseteq A$ be a subset. Define $g: C \to A$ by g(x) = x. Prove that $f|_C = f \circ g$

Proof. Both $f \circ g$ and $f|_C$ are functions with domain C and target set B. Given any $x \in C$, we have

$$f \circ g(x) = f(g(x)) = f(x) = f|_C(x).$$
 QED

- 3. (10 points) Let $A \neq \emptyset$ be a nonempty set. Define $f: A \to \mathcal{P}(A)$ by $f(x) = \{x\}$.
 - (a) (5 points): Prove that f is one-to-one.
 - (b) (5 points): Prove that f is **not** onto.

Proof. (a): Given $x_1, x_2 \in A$ with $f(x_1) = f(x_2)$, we have $\{x_1\} = \{x_2\}$. Thus, $x_1 \in \{x_1\} = \{x_2\}$, so $x_1 = x_2$.

(b): Let $S = \emptyset \in \mathcal{P}(A)$. It suffices to show that for all $x \in A$, we have $f(x) \neq S$, as follows:

Given
$$x \in A$$
, we have $f(x) = \{x\} \neq \emptyset = S$. QED (b)

4. (16 points)

Let B be a set, and define $g: \mathcal{P}(B) \to \mathcal{P}(B)$ by $g(S) = B \setminus S$.

- (a) (4 points): Prove that g is indeed a function.
- (b) (5 points): Prove that for every $S \in \mathcal{P}(B)$, we have $g \circ g(S) = S$.
- (c) (7 points): Prove that g is bijective.

Proof. (a): Given $S \in \mathcal{P}(B)$, we have that $B \setminus S \subseteq B$, and hence $g(S) = B \setminus S \in \mathcal{P}(B)$. QED (a)

(b): Given $S \in \mathcal{P}(B)$, we claim that $B \setminus (B \setminus S) = S$.

Proof of Claim: (\subseteq): Given $x \in B \setminus (B \setminus S)$, we have $x \in B$ and $x \notin B \setminus S$. That is, x is an element of B, but it is false that x is not in S; that is, $x \in S$. QED (\subseteq)

(⊇): Given $x \in S$, we have $x \in B$, and it is false that $x \notin S$. That is, we have $x \in B$ and $x \notin B \setminus S$. Hence, $x \in B \setminus (B \setminus S)$.

QED Claim

Hence, by the claim, we have

$$g \circ g(S) = g(g(S)) = g(B \setminus S) = B \setminus (B \setminus S) = S.$$
 QED (b)

(c): (1-1): Given $S_1, S_2 \in \mathcal{P}(B)$ such that $g(S_1) = g(S_2)$, we have

$$S_1 = g(g(S_1)) = g(g(S_2)) = S_2,$$

where the first and third equalities are by (b), and the second is by assumption.

(Onto): Given $T \in \mathcal{P}(B)$, let $S = g(T) \in \mathcal{P}(B)$. Then by (b), we have

$$g(S) = g(g(T)) = g \circ g(T) = T.$$
 QED (c)

5. Section 6.2, Problem 14 (12 points)

Prove Theorem 6.2.8(b): Let $f:A\to B$ be a function, and let $C,D\subseteq A$ be subsets. Prove that $f(C\cup D)=f(C)\cup f(D)$

Proof. (\subseteq): Given $y \in f(C \cup D)$, there is some $x \in C \cup D$ such that f(x) = y.

Case 1: If $x \in C$, then $y \in f(C) \subseteq f(C) \cup f(D)$.

Case 2: If $x \in D$, then $y \in f(D) \subseteq f(C) \cup f(D)$.

 (\supseteq) : Given $y \in f(C) \cup f(D)$.

Case 1: If $y \in f(C)$, there is some $x \in C$ such that f(x) = y. Since $x \in C \cup D$, we have $y \in f(C \cup D)$.

Case 2: If $y \in f(D)$, there is some $x \in D$ such that f(x) = y. Since $x \in C \cup D$, we have $y \in f(C \cup D)$. QED

- 6. (15 points) Define $h: [-4,4] \to [3,7]$ by $h(x) = 3 + \sqrt{16 x^2}$. Prove that
 - (a) (5 points): h is indeed a function.
 - (b) (6 points): h is onto.
 - (c) (4 points): h is **not** one-to-one.

Proof. (a): Given $x \in [-4, 4]$, we have $0 \le x^2 \le 16$, and hence $0 \le 16 - x^2 \le 16$. Thus, $\sqrt{16 - x^2}$ is defined and lies between 0 and 4. Hence, h(x) is defined, with $3 \le h(x) \le 7$. QED (a)

(b): Given $y \in [3, 7]$, let $x = \sqrt{16 - (y - 3)^2}$. To see that $x \in [-4, 4]$, note that $y - 3 \in [0, 4]$, and hence $16 - (y - 3)^2 \in [0, 16]$. Thus, x is defined, with $0 \le x \le 4$; so in particular, $x \in [-4, 4]$. Moreover,

$$h(x) = 3 + \sqrt{16 - [16 - (y - 3)^2]} = 3 + \sqrt{(y - 3)^2} = 3 + |y - 3| = y,$$

where the last equality is because $y \ge 3$, and hence |y - 3| = y - 3. QED (b)

(c): We have $\pm 4 \in [-4, 4]$, with h(-4) = 3 = h(4), but $-4 \neq 4$. QED (c)