Solutions to Homework #11

1. Section 6.1, Problem 3 (20 points)

Let $S = \{1, 2, 3, 4\}$. For each of the following subsets of $S \times S$, determine whether it is a function. For each one that is a function, find its range, determine whether it is one-to-one, and determine whether it is onto.

- (a): $\{(1,2),(2,1),(3,4),(4,3)\}$ (b): $\{(1,1),(3,1),(2,1),(4,1)\}$
- (c): $\{(1,1),(1,2),(1,3),(1,4)\}$ (d): $\{(1,3),(2,4),(3,3),(4,3)\}$ (e): $\{(1,3),(2,1),(3,2)\}$

Solutions. (a): Yes, function because each element of $S = \{1, 2, 3, 4\}$ shows up as the first coordinate of exactly one ordered pair in the set.

Range is {1,2,3,4} because all four of these elements show up as second coordinates. Thus, yes, onto. Finally, yes, one-to-one because no two pairs have the same second coordinate. [Alternatively, this is because the function is onto, and domain and target are both the same finite cardinality.]

(b): Yes, function because each element of $S = \{1, 2, 3, 4\}$ shows up as the first coordinate of exactly one ordered pair in the set.

Range is $\{1\}$ because 1 is the only element that appears as a second coordinate. Since (for example) $2 \in S$ does not show up, no, not onto.

Finally, no, not one-to-one because the pairs (1,1) and (3,1) both show up with the same second coordinate but different first coordinates. [Alternatively, this is because the function is not onto, and domain and target are both the same finite cardinality.]

- (c): $\boxed{\text{No, not function}}$ because (1,1) and (1,2) have the same first coordinate but different second coordinates.
- (d): Yes, function because each element of $\{1, 2, 3, 4\}$ shows up as the first coordinate of exactly one ordered pair in the set.

Range is $\{3,4\}$ because these are the only two elements that appear as second coordinates. Since (for example) $1 \in S$ does not show up, $\boxed{\text{no, not onto}}$.

Finally, no, not one-to-one because the pairs (1,3) and (3,3) both show up with the same second coordinate but different first coordinates. [Alternatively, this is because the function is not onto, and domain and target are both the same finite cardinality.]

(e): No, not function because $4 \in S$ is not the first coordinate of any pair.

2. Section 6.1, Problem 4(a) (15 points)

Let $f:[0,\infty)\to (0,1]$ by $f(x)=\frac{1}{x+1}$. You may assume that f is a function. Determine whether it is one-to-one, onto, neither, or both. If it is not onto, determine its range.

Solution/Proof. f is both one-to-one and onto

1-1: Given $x_1, x_2 \in [0, \infty)$ with $f(x_1) = f(x_2)$, we have

$$\frac{1}{x_1+1} = \frac{1}{x_2+1}$$
, so $x_1+1 = x_2+1$, so $x_1 = x_2$. QED 1-1

Onto: Given $y \in (0,1]$, let $x = \frac{1}{y} - 1$, which is defined and in \mathbb{R} because $y \neq 0$. In addition, we have

$$\frac{1}{y} > 0$$
 since $y > 0$, and so $\frac{1}{y} \ge 1$ since $y \le 1$.

Thus, $\frac{1}{y} \in [1, \infty)$, and hence $x = \frac{1}{y} - 1 \in [0, \infty)$. Finally, $f(x) = \frac{1}{(\frac{1}{y} - 1) + 1} = \frac{1}{1/y} = y$. QED

3. Section 6.1, Problem 4(b) (12 points)

Let $s : \mathbb{R} \to \mathbb{R}$ by $s(x) = \sin x$. You may assume that s is a function. Determine whether it is one-to-one, onto, neither, or both. If it is not onto, determine its range.

Solution/Proof. s is **neither** one-to-one nor onto

Not 1-1: We have $0, \pi \in \mathbb{R}$ and $s(0) = 0 = s(\pi)$ but $0 \neq \pi$.

QED not 1-1

[There are, of course, many examples of x-values $a \neq b \in \mathbb{R}$ such that $\sin(a) = \sin(b)$; this is merely one such choice.]

Not onto: Let $y = 2 \in \mathbb{R}$. For all $x \in \mathbb{R}$, we have $-1 \le s(x) \le 1$, so $s(x) \ne y$ QED not onto We know from basic trigonometry that $\sin(x)$ takes on every value in [-1, 1], so the range of s is [-1, 1].

4. Section 6.1, Problem 4(c) (18 points)

Let $g: \mathbb{N} \to \mathbb{N}$ by $g(n) = \lfloor (n^2 + 3)/n \rfloor$. You may assume that g is a function. Determine whether it is one-to-one, onto, neither, or both. If it is not onto, determine its range.

Solution/Proof. g is **neither** one-to-one nor onto

Note that $g(n) = \lfloor \overline{n + (3/n) \rfloor}$.

Not 1-1: We have $1, 3 \in \mathbb{N}$ with $1 \neq 3$ but $g(1) = \lfloor 1+3 \rfloor = 4$ and $g(3) = \lfloor 3+1 \rfloor = 4$. QED not 1-1 [FYI: It turns out g(4) = 4 also. But besides g(1) = g(3) = g(4), there are no other distinct choices $a \neq b \in \mathbb{N}$ such that g(a) = g(b).]

Not onto: Let $y = 1 \in \mathbb{N}$. Given any $x \in \mathbb{N}$, we claim that $g(x) \neq y$. To see this, note that if x = 1, we already saw that $g(1) = 4 \neq 1$. Otherwise, we have $x \geq 2$, in which case $g(x) \geq \lfloor x \rfloor = x \geq 2$, so $g(x) \neq 1$. QED not onto

We also have that $g(2) = \lfloor 2+1.5 \rfloor = 3$, and as we saw above, g(3) = 4. We claim that for all $x \in \mathbb{N}$ with $x \ge 4$, we have g(x) = x. To see this, given such x, we have 0 < 3/x < 1, and hence $g(x) = \lfloor x + (3/x) \rfloor = x$, as desired.

Thus, g takes on every value in $\{y \in \mathbb{N} \mid y \geq 4\}$, since we have g(y) = y for all such y. We also saw g(2) = 3, so in fact, g takes on every value in $\{y \in \mathbb{N} \mid y \geq 3\}$. Recalling that g(1) = 4, it follows that the range of g is $\{y \in \mathbb{N} \mid y \geq 3\}$

5. Section 6.1, Problem 5(a) (15 points)

Consider the function $g: \{n \in \mathbb{N} \mid n \ge 100\} \to \mathbb{N}$ by g(n) = the sum of the digits of n. Determine whether g is one-to-one, onto, neither, or both. If it is not onto, determine its range.

Solution/Proof. g is onto but not one-to-one

Onto: Given $b \in \mathbb{N}$, let n be the integer given by b 1's followed by two 0's, i.e., $n = \underbrace{11 \cdots 1}_{} 00$. Then

since $b \ge 1$, we have that n is an integer with $n \ge 100$, so n is in the domain of g. By definition of g, we have g(n) = b.

Not 1-1: We have $200, 1100 \in \{n \in \mathbb{N} \mid n \ge 100\}$ with $200 \ne 1100$, but g(200) = 2 = g(1100). QED not 1-1

[There are **lots** of other ways to see that g is not one-to-one, of course.]