Solutions to Homework #10

1. (16 points) Prove that $\bigcap_{t \in (2,6)} [0, 2t + 5) = [0, 9]$

Proof. (\subseteq): Given $x \in LHS$, then using $t = 3 \in (2,6)$, we have $x \in [0, 2 \cdot 3 + 5) = [0,11)$, so that in particular, $x \in \mathbb{R}$ with $0 \le x < 11$. It remains to show that $x \le 9$.

Suppose (towards a contradiction) that x > 9. Let t = (x - 5)/2. Then since 9 < x < 11, we have 4 < x - 5 < 6, so

$$2 = \frac{4}{2} < t = \frac{x - 5}{2} < \frac{6}{2} < 6,$$

and hence $t \in (2,6)$. But we also have 2t+5=(x-5)+5=x, so $x=2t+5 \notin [0,2t+5)$, a contradiction. Thus, we must have $x \leq 9$.

Since $x \in \mathbb{R}$ with $0 \le x \le 9$, we have $x \in [0, 9]$.

 (\supseteq) : Given $x \in [0,9]$, and given $t \in (2,6)$, note that 2t+5>2(2)+5=9. Thus, $x \in \mathbb{R}$ with

$$0 \le x \le 9 < 2t + 5$$
, so $x \in [0, 2t + 5)$.

Since this holds for all $t \in (2,6)$, we have $x \in LHS$.

QED

Note: In the (\subseteq) step, how did I decide to use contradiction, and how did I think of that choice of t? Well, I carefully wrote out the proof skeleton, knowing that I would be given arbitrary $x \in LHS$ and would need to prove $0 \le x \le 9$. The $x \ge 0$ part came easy, so then I needed to prove $x \le 9$. But even though my hypothesis said that for every $t \in (2,6)$, I couldn't find a (single) value of t for which knowing x < 2t + 5 alone would imply $x \le 9$. So after some messing around, I decided it was worth trying a contradiction proof, and seeing what would happen if I assumed x > 9. Then I realized I could pick a value of $t \in (2,6)$, chosen to give x = 2t + 5 (which is not in [0,2t+5)), by solving x = 2t + 5 in my scratchwork to get t = (x - 5)/2.

2. (10 points) Prove that there is a unique real number $c \in \mathbb{R}$ such that for all $t \in \mathbb{R}$, we have ct - 3c + 12 = 4t.

Proof. (Existence): Let $c = 4 \in \mathbb{R}$. Then for any $t \in \mathbb{R}$, we have

$$ct - 3c + 12 = 4t - 12 + 12 = 4t$$
.

(Uniqueness): Suppose $c_1, c_2 \in \mathbb{R}$ both work for all $t \in \mathbb{R}$. Then in particular, for t = 0, we have

$$c_1t - 3c_1 + 12 = 4t = c_2t - 3c_2 + 12$$
, and hence $-3c_1 + 12 = -3c_2 + 12$.

Subtracting 12 from both sides yields $-3c_1 = -3c_2$, so dividing by -3 gives $c_1 = c_2$. QED

Note 1: How did I think of c=4? By solving the original equation for c in my scratchwork. Rearranging the equation gives (c-4)(t-3)=0. If that's going to be true for all $t\in\mathbb{R}$, including t-values other than 3, then we must have c-4=0, so c=4.

Note 2: An alternative proof of uniqueness would be to prove that if $c \in \mathbb{R}$ satisfies the equation for all t, then c=4, via factoring the equation as in Note 1 above, and plugging in a specific value for t, like t=0. (Any choice of $t \in \mathbb{R}$ besides t=3 would work, but the point is, one needs to actually choose a specific value of t in the proof.)

3. (14 points) Prove that for every $y \in [-2, 2]$, there is some $x \in [1, 3]$ such that $\frac{6}{x} - 4 = y$.

Proof. Given $y \in [-2, 2]$, let $x = \frac{6}{y+4}$.

Since $y \neq -4$, we have $x \in \mathbb{R}$. In addition, because $y \leq 2$, we have

$$x = \frac{6}{y+4} \ge \frac{6}{2+4} = 1,$$

and because $y \ge -2$, we have

$$x = \frac{6}{y+4} \le \frac{6}{-2+4} = 3.$$

Thus, $x \in [1, 3]$.

Finally, we have
$$\frac{6}{x} - 4 = \frac{6(y+4)}{6} - 4 = y+4-4 = y$$
. QED

4. (11 points) Define a sequence c_1, c_2, c_3, \ldots of real numbers by:

$$c_1 = \frac{1}{2}$$
, and for every $n \ge 1$, $c_{n+1} = c_n - c_n^2$.

Use mathematical induction to prove that for all $n \in \mathbb{N}$, we have $0 < c_n < 1$.

Proof. [By induction on $n \ge 1$.]

Base Case: For n = 1, we have $0 < \frac{1}{2} = c_1 < 1$, as desired.

Inductive Step: Assume the statement is true for some $n = k \ge 1$. Then

$$c_{k+1} = c_k - c_k^2 < c_k < 1,$$

since $c_k^2 > 0$. In addition, we have $c_k > 0$ and $1 - c_k > 0$ by the inductive hypothesis, and hence

$$c_{k+1} = c_k - c_k^2 = c_k(1 - c_k) > 0.$$

Thus,
$$0 < c_{k+1} < 1$$
.

5. (14 points) Use mathematical induction to prove that for all integers $n \geq 2$, we have

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}.$$

Proof. [By induction on $n \ge 2$.]

Base Case: For n=2, we have

$$(LHS)^2 = \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}}\right)^2 = \left(\frac{\sqrt{2}+1}{\sqrt{2}}\right)^2 = \frac{1+2\sqrt{2}+2}{2} = \frac{3}{2} + \sqrt{2} > 1+1 = 2 = (RHS)^2.$$

Taking square roots [and remembering that both LHS and RHS are positive], it follows that LHS > RHS, as desired.

Inductive Step: Assume the statement is true for some $n = k \ge 2$. Observe that $k^2 < k^2 + k = k(k+1)$, and therefore, $k < \sqrt{k(k+1)}$. Hence, $k+1 < 1 + \sqrt{k} \cdot \sqrt{k+1}$. Dividing both sides by $\sqrt{k+1} > 0$, it follows that $\frac{1}{\sqrt{k+1}} + \sqrt{k} > \sqrt{k+1}$. Thus,

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k+1}} = \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}}\right) + \frac{1}{\sqrt{k+1}} > \sqrt{k} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$$

where the first inequality is by the inductive hypothesis, and the second is by what we just proved. QED