
Math 220, Section 03, Fall 2025 Professor Rob Benedetto

Solutions to Homework #10

1. (16 points) Prove that
⋂

t∈(2,6)

[0, 2t+ 5) = [0, 9]

Proof. (⊆): Given x ∈LHS, then using t = 3 ∈ (2, 6), we have x ∈ [0, 2 · 3 + 5) = [0, 11), so that in
particular, x ∈ R with 0 ≤ x < 11. It remains to show that x ≤ 9.
Suppose (towards a contradiction) that x > 9. Let t = (x − 5)/2. Then since 9 < x < 11, we have
4 < x− 5 < 6, so

2 =
4

2
< t =

x− 5

2
<

6

2
< 6,

and hence t ∈ (2, 6). But we also have 2t+5 = (x−5)+5 = x, so x = 2t+5 ̸∈ [0, 2t+5), a contradiction.
Thus, we must have x ≤ 9.
Since x ∈ R with 0 ≤ x ≤ 9, we have x ∈ [0, 9].

(⊇): Given x ∈ [0, 9], and given t ∈ (2, 6), note that 2t+ 5 > 2(2) + 5 = 9. Thus, x ∈ R with

0 ≤ x ≤ 9 < 2t+ 5, so x ∈ [0, 2t+ 5).

Since this holds for all t ∈ (2, 6), we have x ∈LHS. QED

Note: In the (⊆) step, how did I decide to use contradiction, and how did I think of that choice of
t? Well, I carefully wrote out the proof skeleton, knowing that I would be given arbitrary x ∈LHS and
would need to prove 0 ≤ x ≤ 9. The x ≥ 0 part came easy, so then I needed to prove x ≤ 9. But even
though my hypothesis said that for every t ∈ (2, 6), I couldn’t find a (single) value of t for which knowing
x < 2t + 5 alone would imply x ≤ 9. So after some messing around, I decided it was worth trying a
contradiction proof, and seeing what would happen if I assumed x > 9. Then I realized I could pick a
value of t ∈ (2, 6), chosen to give x = 2t + 5 (which is not in [0, 2t + 5)), by solving x = 2t + 5 in my
scratchwork to get t = (x− 5)/2.

2. (10 points) Prove that there is a unique real number c ∈ R such that for all t ∈ R, we have ct−3c+12 =
4t.

Proof. (Existence): Let c = 4 ∈ R. Then for any t ∈ R, we have

ct− 3c+ 12 = 4t− 12 + 12 = 4t.

(Uniqueness): Suppose c1, c2 ∈ R both work for all t ∈ R. Then in particular, for t = 0, we have

c1t− 3c1 + 12 = 4t = c2t− 3c2 + 12, and hence − 3c1 + 12 = −3c2 + 12.

Subtracting 12 from both sides yields −3c1 = −3c2, so dividing by −3 gives c1 = c2. QED

Note 1: How did I think of c = 4? By solving the original equation for c in my scratchwork. Rearranging
the equation gives (c−4)(t−3) = 0. If that’s going to be true for all t ∈ R, including t-values other than
3, then we must have c− 4 = 0, so c = 4.
Note 2: An alternative proof of uniqueness would be to prove that if c ∈ R satisfies the equation for all
t, then c = 4, via factoring the equation as in Note 1 above, and plugging in a specific value for t, like
t = 0. (Any choice of t ∈ R besides t = 3 would work, but the point is, one needs to actually choose a
specific value of t in the proof.)

3. (14 points) Prove that for every y ∈ [−2, 2], there is some x ∈ [1, 3] such that
6

x
− 4 = y.

Proof. Given y ∈ [−2, 2], let x =
6

y + 4
.



Since y ̸= −4, we have x ∈ R. In addition, because y ≤ 2, we have

x =
6

y + 4
≥ 6

2 + 4
= 1,

and because y ≥ −2, we have

x =
6

y + 4
≤ 6

−2 + 4
= 3.

Thus, x ∈ [1, 3].

Finally, we have
6

x
− 4 =

6(y + 4)

6
− 4 = y + 4− 4 = y. QED

4. (11 points) Define a sequence c1, c2, c3, . . . of real numbers by:

c1 =
1

2
, and for every n ≥ 1, cn+1 = cn − c2n.

Use mathematical induction to prove that for all n ∈ N, we have 0 < cn < 1.

Proof. [By induction on n ≥ 1.]

Base Case: For n = 1, we have 0 <
1

2
= c1 < 1, as desired.

Inductive Step: Assume the statement is true for some n = k ≥ 1. Then

ck+1 = ck − c2k < ck < 1,

since c2k > 0. In addition, we have ck > 0 and 1− ck > 0 by the inductive hypothesis, and hence

ck+1 = ck − c2k = ck(1− ck) > 0.

Thus, 0 < ck+1 < 1. QED

5. (14 points) Use mathematical induction to prove that for all integers n ≥ 2, we have
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Proof. [By induction on n ≥ 2.]
Base Case: For n = 2, we have
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Taking square roots [and remembering that both LHS and RHS are positive], it follows that LHS>RHS,
as desired.
Inductive Step: Assume the statement is true for some n = k ≥ 2. Observe that k2 < k2+k = k(k+1),
and therefore, k <

√
k(k + 1). Hence, k + 1 < 1 +

√
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√
k + 1. Dividing both sides by

√
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follows that
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1√
1
+

1√
2
+ · · ·+ 1√

k + 1
=

(
1√
1
+

1√
2
+ · · ·+ 1√

k

)
+

1√
k + 1

>
√
k +

1√
k + 1

>
√
k + 1,

where the first inequality is by the inductive hypothesis, and the second is by what we just proved. QED


