Math 220, Section 03, Fall 2025 Professor Rob Benedetto
Solutions to Homework #10

1. (16 points) Prove that ﬂ [0,2t +5) = [0,9]
te(2,6)
Proof. (C): Given z €LHS, then using ¢t = 3 € (2,6), we have x € [0,2-3 +5) = [0,11), so that in
particular, x € R with 0 < x < 11. It remains to show that = < 9.
Suppose (towards a contradiction) that z > 9. Let ¢ = (z — 5)/2. Then since 9 < = < 11, we have
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and hence t € (2,6). But we also have 2t+5 = (z—5)+5=x,s0x = 2t+5 ¢ [0,2t+5), a contradiction.
Thus, we must have x < 9.
Since z € R with 0 <z <9, we have z € [0,9].

(2): Given z € [0,9], and given ¢ € (2,6), note that 2t +5 > 2(2) +5 =9. Thus, x € R with

4
2=—-<t=
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0<x<9<2t+5, so ze€l0,2t+5).

Since this holds for all ¢ € (2,6), we have x €LHS. QED

Note: In the (C) step, how did I decide to use contradiction, and how did I think of that choice of
t? Well, I carefully wrote out the proof skeleton, knowing that I would be given arbitrary  €LHS and
would need to prove 0 < x < 9. The x > 0 part came easy, so then I needed to prove z < 9. But even
though my hypothesis said that for every t € (2,6), I couldn’t find a (single) value of ¢ for which knowing
x < 2t + 5 alone would imply x < 9. So after some messing around, I decided it was worth trying a
contradiction proof, and seeing what would happen if I assumed =z > 9. Then I realized I could pick a
value of ¢t € (2,6), chosen to give z = 2t + 5 (which is not in [0,2t 4+ 5)), by solving z = 2¢t + 5 in my
scratchwork to get ¢t = (z — 5)/2.

2. (10 points) Prove that there is a unique real number ¢ € R such that for all ¢ € R, we have ¢t —3c+12 =
4.

Proof. (Existence): Let ¢ =4 € R. Then for any t € R, we have
ct—3c+12 =4t - 12+ 12 = 4¢.
(Uniqueness): Suppose ¢1,c2 € R both work for all ¢ € R. Then in particular, for ¢ = 0, we have
cit —3c1 + 12 =4t = cot — 3co + 12, and hence — 3¢+ 12 = -3¢y + 12.
Subtracting 12 from both sides yields —3c¢; = —3c¢s, so dividing by —3 gives ¢; = ¢s. QED

Note 1: How did I think of ¢ = 4?7 By solving the original equation for ¢ in my scratchwork. Rearranging
the equation gives (¢ —4)(t —3) = 0. If that’s going to be true for all t € R, including ¢-values other than
3, then we must have c —4 =0, so ¢ = 4.

Note 2: An alternative proof of uniqueness would be to prove that if ¢ € R satisfies the equation for all
t, then ¢ = 4, via factoring the equation as in Note 1 above, and plugging in a specific value for ¢, like
t = 0. (Any choice of t € R besides t = 3 would work, but the point is, one needs to actually choose a
specific value of ¢ in the proof.)
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3. (14 points) Prove that for every y € [—2,2], there is some = € [1,3] such that — —4 = y.
x
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Proof. Gi €-2,2), let & = ——.
roof. Given y € | ], let = S



Since y # —4, we have x € R. In addition, because y < 2, we have
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and because y > —2, we have
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Thus, z € [1, 3].
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Finally, we have — — 4 =
x

QED

4. (11 points) Define a sequence c1, 2, cs, ... of real numbers by:
1 2
c1 = 2 and for every n > 1, cpy1 =c¢, —c,.

Use mathematical induction to prove that for all n € N, we have 0 < ¢,, < 1.

Proof. [By induction on n > 1.]
Base Case: For n =1, we have 0 < 3 =0 < 1, as desired.

Inductive Step: Assume the statement is true for some n = k > 1. Then
ck+1:ck—ci<ck< 1,
since ci > 0. In addition, we have ¢ > 0 and 1 — ¢; > 0 by the inductive hypothesis, and hence
Chp1 = — o = cp(1 —¢x) > 0.

Thus, 0 < ¢g41 < 1.

QED

5. (14 points) Use mathematical induction to prove that for all integers n > 2, we have

1 1 1
;€+;§+~-+Vﬁ>vﬁ

Proof. [By induction on n > 2.]
Base Case: For n = 2, we have

\1f })2 (f\/;) 142v2 42

f+f>1+1_2_(RHS)
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Taking square roots [and remembering that both LHS and RHS are positive], it follows that LHS > RHS,

as desired.

Inductive Step: Assume the statement is true for some n = k > 2. Observe that k> < k2 +k = k(k+1),
and therefore, k < \/k(k 4 1). Hence, k + 1 < 1 + k- vk + 1. Dividing both sides by vk + 1 > 0, it

1
follows that ———— + vk > vk + 1. Thus,

vk +1
1 1 1 1 1 1 1 1

where the first inequality is by the inductive hypothesis, and the second is by what we just proved.

QED



