Homework #7

Due Friday, September 26 in Gradescope by 11:59 pm ET

READ Sections 2.1, 2.2 in Richmond&Richmond

WATCH Video 5: Odds and Evens (19:05) [Found on moodle site]

WRITE AND SUBMIT solutions to the following problems. ALWAYS justify your claims.

Problem 1. (6 points) Section 2.1, #22 (rephrased slightly)

For any rational number $x \in \mathbb{Q}$ and any irrational real number $y \in \mathbb{R} \setminus \mathbb{Q}$, prove that x + y is irrational.

Problem 2. (7 points) Section 2.1, #39, variant

We say an integer $z \in \mathbb{Z}$ is an additive identity element for \mathbb{Z} (or simply an additive identity, for short) if the following statement is true:

$$\forall n \in \mathbb{Z}$$
, we have $z + n = n$.

We saw a proof in class that 0 is an additive identity element for \mathbb{Z} . Prove that it is unique.

[That is, prove that if $z \in \mathbb{Z}$ is an additive identity element, then we must have z = 0.]

Problem 3. (20 points) Section 2.2, #2(b,h)

Prove the following by induction n.

(b)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
 for all $n \in \mathbb{N}$

(h)
$$\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} < 3 - \frac{2}{(n+1)!}$$
 for all $n \in \mathbb{N} \setminus \{1\}$

Problem 4. (12 points) Section 2.2, #5

Find the value of $2^0 + 2^1 + 2^2 + \cdots + 2^n$ for n = 0, 1, 2, 3, 4. Make a conjecture about the value of the sum for $n \in \mathbb{N} \cup \{0\}$. Prove your conjecture.

Problem 5. (12 points) Section 2.2, #14

Prove Bernoulli's inequality: For every $\alpha \in \mathbb{R}$ with $\alpha > -1$ and $\alpha \neq 0$, and for every $n \in \mathbb{N} \setminus \{1\}$, we have $(1 + \alpha)^n > 1 + n\alpha$.

Problem 6. (14 points) Section 2.2, #19 (with parts a, b, c)

Define a sequence of numbers a_0, a_1, a_2, \ldots as follows:

$$a_0 = 0$$
, $a_1 = 1$, and for all $n \ge 2$, we have $a_n = 2a_{n-1} - a_{n-2} + 2$.

- (a) Find a_2, a_3, a_4, a_5
- (b) Conjecture a formula for a_n for all $n \in \mathbb{N} \cup \{0\}$.
- (c) Prove the conjectural formula you stated in part (b).

(Office Hour Information on next page)

Questions? You can ask in class or in:

My (Drop-In) Office Hours (SMUD 406):

 $\begin{array}{ll} \mbox{Mondays} & 2:00-3:30\mbox{pm} \\ \mbox{Tuesdays} & 1:45-3:15\mbox{pm} \\ \mbox{Fridays} & 1:00-2:00\mbox{pm} \end{array}$

or by appointment.

Allison Tanguay's QCenter Drop-in Hours (SMUD 208):

Mon/Wed/Fri 10:00am-noon Tue/Thu 1:30-4:30pm

Math Fellow Drop-in Hours (SMUD 006):

Mondays	6:00-7:30 pm	Aaron Cordoba
Mondays	7:30-9:00pm	John Lim
Tuesdays	6:00-7:30 pm	Aaron Cordoba
Tuesdays	7:30-9:00pm	Gretta Ineza
Wednesdays	7:30-9:00pm	John Lim
Thursdays	6:00-7:30 pm	Gretta Ineza

Also, you may email me any time at ${\tt rlbenedetto@amherst.edu}$