Homework #6

Due Tuesday, September 23 in Gradescope by 11:59 pm ET

READ Section 2.1 in Richmond&Richmond

WRITE AND SUBMIT solutions to the following problems. ALWAYS justify your claims.

Problem 1. (10 points) Section 2.1, #9

Let $a, b, c \in \mathbb{R}$, and let p(x) be the polynomial $p(x) = ax^2 + bx + c$. Prove that p(1) = p(-1) if and only if p(2) = p(-2).

Problem 2. (10 points) Section 2.1, #12

Prove that for any integer $n \in \mathbb{Z}$, the number $n^3 + n$ is an even integer.

Problem 3. (10 points) Section 2.1, #15(a)

Let $a \in \mathbb{Z}$ be an integer. Prove that a is a multiple of 3 if and only if a may be written as the sum of three consecutive integers.

Problem 4. (15 points) Section 2.1, #17

Let $m, n \in \mathbb{Z}$ be integers. Prove that the following statements are equivalent:

- (a) $m^2 n^2$ is even.
- (b) m-n is even.
- (c) $m^2 + n^2$ is even.

[Note: This is *not* a problem with three parts (a)–(c). Instead, you are being asked to prove that the three statements above are equivalent; that is, if any one of them is true, then all three are true.]

Problem 5. (15 points) Section 2.1, #5

Let $A, B, C \in \mathbb{Z}$ be integers with $A, B \neq 0$, and let L be the line $\{(x, y) \in \mathbb{R}^2 \mid Ax + By = C\}$. Suppose that L contains a lattice point [see below]. Prove that L contains infinitely many lattice points.

A lattice point in \mathbb{R}^2 is a point $(m,n) \in \mathbb{R}^2$ such that $m,n \in \mathbb{Z}$, i.e., such that both coordinates are integers.

Problem 6. (15 points) Section 2.1, #8(a)

For any $x \in \mathbb{R}$, let $\lfloor x \rfloor$ denote the greatest integer that is less than or equal to x. ($\lfloor x \rfloor$ is sometimes called the *floor function* of x.)

Prove that for all $x, y \in \mathbb{R}$, we have $\lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor \leq \lfloor x \rfloor + \lfloor y \rfloor + 1$.

[Hints/Suggestions for #6: It may help to notice that for any $x \in \mathbb{R}$, if we define $m = \lfloor x \rfloor$, then $m \in \mathbb{Z}$ and $m \le x < m + 1$. Also, if $k \in \mathbb{Z}$ is *some* integer with $k \le x$, then we must have k < m, since m is the *greatest* integer with m < x.]

Questions? You can ask in class or in:

My (Drop-In) Office Hours (SMUD 406):

 $\begin{array}{ll} \mbox{Mondays} & 2:00-3:30\mbox{pm} \\ \mbox{Tuesdays} & 1:45-3:15\mbox{pm} \\ \mbox{Fridays} & 1:00-2:00\mbox{pm} \end{array}$

or by appointment.

Allison Tanguay's QCenter Drop-in Hours (SMUD 208):

Mon/Wed/Fri 10:00am-noon Tue/Thu 1:30-4:30pm

Math Fellow Drop-in Hours (SMUD 006):

Mondays	6:00-7:30 pm	Aaron Cordoba
Mondays	7:30-9:00pm	John Lim
Tuesdays	6:00-7:30 pm	Aaron Cordoba
Tuesdays	7:30-9:00pm	Gretta Ineza
Wednesdays	7:30-9:00pm	John Lim
Thursdays	6:00-7:30 pm	Gretta Ineza

Also, you may email me any time at ${\tt rlbenedetto@amherst.edu}$