Homework #15

Due WEDNESDAY, November 5 in Gradescope by 11:59 pm ET

READ Section 8.1 in Richmond&Richmond

WATCH Lecture Videos A–H [Found on moodle site]

WRITE AND SUBMIT solutions to the following problems. ALWAYS justify your claims.

Problem 1. (12 points) Section 8.1, #2

Give the first five terms, and the tenth term, of each of the following sequences:

- (a) $(a_n)_{n=-3}^{\infty}$ where $a_n = (-2)^n$
- (b) $(b_n)_{n=5}^{\infty}$ where $b_n = 12n 121$
- (c) $(c_n)_{n=-1}^{\infty}$ where $c_n = 2n^2 n + 1$

[Note: These sequences do not start with n = 1. Don't give the terms corresponding to n = 1, 2, 3, 4, 5, 10, but rather the first five terms, and the tenth term, of each.]

Problem 2. (15 points) Section 8.1, #6(a, c, d)

Let $(a_n)_{n=1}^{\infty}$ be the real sequence given by $a_n = 2n - 5$. For each function $f : \mathbb{N} \to \mathbb{N}$ below, find the sequence $(b_n)_{n=1}^{\infty}$ given by $b_n = a_{f(n)}$. Determine whether or not $(b_n)_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$. (And briefly explain why, of course.)

- (a) $f(n) = n^2$
- (c) $f(n) = \lfloor \frac{n}{2} \rfloor$
- (d) f(n) = |2n 7|

Problem 3. (15 points) Section 8.1, #7, variant

Prove that a real sequence $(a_n)_{n=1}^{\infty}$ is both geometric and arithmetic if and only if it is constant.

[A sequence $(a_n)_{n=1}^{\infty}$ is said to be *constant* if for all m, n, we have $a_m = a_n$.]

Problem 4. (12 points) Section 8.1, #11, variant

Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers, and let $(b_n)_{n=1}^{\infty}$ be a strictly increasing arithmetic sequence of positive integers, so that $(a_{b_n})_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$.

- (a) If $(a_n)_{n=1}^{\infty}$ is an arithmetic sequence, prove that the subsequence $(a_{b_n})_{n=1}^{\infty}$ is also arithmetic.
- (b) If $(a_n)_{n=1}^{\infty}$ is a geometric sequence, prove that the subsequence $(a_{b_n})_{n=1}^{\infty}$ is also geometric.

Problem 5. (16 points) Section 8.1, #12, variant

Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers, and let $(b_n)_{n=1}^{\infty}$ be a strictly increasing geometric sequence of positive integers, so that $(a_{b_n})_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$.

If $(a_n)_{n=1}^{\infty}$ is a non-constant arithmetic sequence, prove that the subsequence $(a_{b_n})_{n=1}^{\infty}$ is definitely **not** arithmetic.

Questions? You can ask in class or in:

My (Drop-In) Office Hours (SMUD 406): NONE THIS WEEK

Mondays	2:00 3:30pm	Cancelled Monday, November 3
Tuesdays	1:45-3:15pm	Cancelled Tuesday, November 4
Fridays	1:00-2:00pm	Cancelled Friday, November 7
or by appointment.		No appointments this week

Allison Tanguay's QCenter Drop-in Hours (SMUD 208):

Mon/Wed/Fri	10:00am-noon
Tue/Thu	1:30-4:30pm

Math Fellow Drop-in Hours (SMUD 006):

Mondays	6:00–7:30pm	Aaron Cordoba
Mondays	7:30–9:00pm	John Lim
Tuesdays	6:00–7:30pm	Aaron Cordoba
Tuesdays	7:30–9:00pm	Gretta Ineza
Wednesdays	7:30-9:00pm	John Lim
Thursdays	6:00-7:30pm	Gretta Ineza

Also, you may email me any time at rlbenedetto@amherst.edu