Homework #14

Due Friday, October 31 in Gradescope by 11:59 pm ET

READ Section 6.2 in Richmond&Richmond

WATCH Video 14: Image and Inverse Image (29:13) [Found on moodle site]

WRITE AND SUBMIT solutions to the following problems. ALWAYS justify your claims.

Problem 1. (15 points) Section 6.2, #4(a,b)

For each of the following functions $f: A \to B$, decide whether or not it is invertible. If it is, find the inverse function. (And as always, make sure to prove all of your claims.)

(a):
$$A = B = \mathbb{R}$$
, and $f(x) = \frac{5x - 1}{3}$

(b):
$$A = \mathbb{R}$$
, $B = [-4, \infty)$, and $f(x) = (x - 3)^2 - 4$

Problem 2. (17 points) Section 6.2, #4(c), variant

Define
$$f: \mathbb{Z} \to \mathbb{N}$$
 by $f(n) = \begin{cases} 2n & \text{if } n \ge 1, \\ -2n+1 & \text{if } n \le 0. \end{cases}$

Prove that f is invertible, with inverse function $f^{-1}: \mathbb{N} \to \mathbb{Z}$ given by

$$f^{-1}(m) = \begin{cases} m/2 & \text{if } m \text{ is even,} \\ -(m-1)/2 & \text{if } m \text{ is odd.} \end{cases}$$

(You may assume that $f: \mathbb{Z} \to \mathbb{N}$ and $f^{-1}: \mathbb{N} \to \mathbb{Z}$ as above are indeed both functions; but otherwise, as always, make sure to prove all of your claims.)

Problem 3. (17 points) Section 6.2, #6(a,b), variant

Let $g: \mathbb{R} \to \mathbb{Z}$ be the *ceiling function* $g(x) = \lceil x \rceil$, defined to be the smallest integer that is greater than or equal to x.

- (a) Prove that the image $g([-\pi, \pi])$ is $g([-\pi, \pi]) = \{-3, -2, -1, 0, 1, 2, 3, 4\}$.
- (b) Prove that the inverse image $g^{-1}(\{-2,-1\})$ is $g^{-1}(\{-2,-1\}) = (-3,-1]$.

Problem 4. (22 points)

Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = 2x^2 - 7$. Prove that:

(a)
$$f^{-1}([2,5)) = \left(-\sqrt{6}, -\frac{3}{\sqrt{2}}\right] \cup \left[\frac{3}{\sqrt{2}}, \sqrt{6}\right)$$

(b)
$$f^{-1}((-10, -5]) = [-1, 1]$$

(c)
$$f((-3,2)) = [-7,11)$$

Questions? You can ask in class or in:

My (Drop-In) Office Hours (SMUD 406):

 $\begin{array}{ll} \mbox{Mondays} & 2:00-3:30\mbox{pm} \\ \mbox{Tuesdays} & 1:45-3:15\mbox{pm} \\ \mbox{Fridays} & 1:00-2:00\mbox{pm} \end{array}$

or by appointment.

Allison Tanguay's QCenter Drop-in Hours (SMUD 208):

Mon/Wed/Fri 10:00am-noon Tue/Thu 1:30-4:30pm

Math Fellow Drop-in Hours (SMUD 006):

Mondays	6:00-7:30 pm	Aaron Cordoba
Mondays	7:30-9:00pm	John Lim
Tuesdays	6:00-7:30 pm	Aaron Cordoba
Tuesdays	7:30-9:00pm	Gretta Ineza
Wednesdays	7:30-9:00pm	John Lim
Thursdays	6:00-7:30 pm	Gretta Ineza

Also, you may email me any time at ${\tt rlbenedetto@amherst.edu}$