Homework #13

Due Tuesday, October 28 in Gradescope by 11:59 pm ET

READ Sections 6.1, 6.2 in Richmond&Richmond

WATCH Video 13: Restriction of a Function (16:43) [Found on moodle site]

WRITE AND SUBMIT solutions to the following problems. ALWAYS justify your claims.

Problem 1. (18 points) Let $X = \mathbb{R} \setminus \{5\}$ and $Y = \mathbb{R} \setminus \{2\}$. Define $f: X \to Y$ by $f(x) = \frac{2x-3}{x-5}$.

- (a) (5 points): Prove that f is defined, i.e., for every $x \in X$, the value f(x) is defined and is in Y.
- (b) (5 points): Prove that f is one-to-one.
- (c) (8 points): Prove that f is onto.

Problem 2. (5 points)

Let $f: A \to B$ be a function, and let $C \subseteq A$ be a subset. Define $g: C \to A$ by g(x) = x. Prove that $f|_C = f \circ g$

[Recall that $f|_C$, called the *restriction* of f to C, is the function $f|_C: C \to B$ given by $f|_C(x) = f(x)$ for $x \in C$.]

Problem 3. (10 points)

Let $A \neq \emptyset$ be a nonempty set. Define $f: A \to \mathcal{P}(A)$ by $f(x) = \{x\}$.

- (a) (5 points): Prove that f is one-to-one.
- (b) (5 points): Prove that f is **not** onto.

Problem 4. (16 points)

Let B be a set, and define $g: \mathcal{P}(B) \to \mathcal{P}(B)$ by $g(S) = B \setminus S$.

- (a) (4 points): Prove that g is indeed a function.
- (b) (5 points): Prove that for every $S \in \mathcal{P}(B)$, we have $g \circ g(S) = S$.
- (c) (7 points): Prove that g is bijective. [Suggestion: Use part (b) above.]

Problem 5. Section 6.2, #14 (12 points)

Prove Theorem 6.2.8(b): Let $f:A\to B$ be a function, and let $C,D\subseteq A$ be subsets. Prove that $f(C\cup D)=f(C)\cup f(D)$

Problem 6. (15 points)

Define $h: [-4,4] \to [3,7]$ by $h(x) = 3 + \sqrt{16 - x^2}$. Prove that

- (a) (5 points): h is indeed a function.
- (b) (6 points): h is onto.
- (c) (4 points): h is **not** one-to-one.

Questions? You can ask in class or in:

My (Drop-In) Office Hours (SMUD 406):

 $\begin{array}{ll} \mbox{Mondays} & 2:00-3:30\mbox{pm} \\ \mbox{Tuesdays} & 1:45-3:15\mbox{pm} \\ \mbox{Fridays} & 1:00-2:00\mbox{pm} \end{array}$

or by appointment.

Allison Tanguay's QCenter Drop-in Hours (SMUD 208):

Mon/Wed/Fri 10:00am-noon Tue/Thu 1:30-4:30pm

Math Fellow Drop-in Hours (SMUD 006):

Mondays	6:00-7:30 pm	Aaron Cordoba
Mondays	7:30-9:00pm	John Lim
Tuesdays	6:00-7:30 pm	Aaron Cordoba
Tuesdays	7:30-9:00pm	Gretta Ineza
Wednesdays	7:30-9:00pm	John Lim
Thursdays	6:00-7:30 pm	Gretta Ineza

Also, you may email me any time at ${\tt rlbenedetto@amherst.edu}$