Homework #11

Due Tuesday, October 21 in Gradescope by 11:59 pm ET

READ Section 6.1 in Richmond&Richmond

WATCH 1. Video 11: Proving the Well-Ordering Principle (Optional) (12:04)

2. Video 12: Onto and One-to-One (27:04)

[Found on moodle site]

WRITE AND SUBMIT solutions to the following problems. ALWAYS justify your claims.

Problem 1. (20 points) Section 6.1, #3

Let $S = \{1, 2, 3, 4\}$. For each of the following subsets of $S \times S$, determine whether it is a function. For each one that is a function, find its range, determine whether it is one-to-one, and determine whether it is onto.

(a):
$$\{(1,2),(2,1),(3,4),(4,3)\}$$
 (b): $\{(1,1),(3,1),(2,1),(4,1)\}$

(c):
$$\{(1,1),(1,2),(1,3),(1,4)\}$$
 (d): $\{(1,3),(2,4),(3,3),(4,3)\}$

(e):
$$\{(1,3),(2,1),(3,2)\}$$

[Note: as always, don't forget to justify every claim you make!]

Problem 2. (15 points) Section 6.1, #4(a)

Let $f:[0,\infty)\to (0,1]$ by $f(x)=\frac{1}{x+1}$. You may assume that f is a function. Determine whether it is one-to-one, onto, neither, or both. If it is not onto, determine its range.

As always, prove all of your claims. (Some proofs are very short!)

Problem 3. (12 points) Section 6.1, #4(b)

Let $s: \mathbb{R} \to \mathbb{R}$ by $s(x) = \sin x$. You may assume that s is a function. Determine whether it is one-to-one, onto, neither, or both. If it is not onto, determine its range.

As always, justify all of your claims. (Some justifications are very short! You may assume standard facts from high school trigonometry.)

Problem 4. (18 points) Section 6.1, #4(c)

Let $g: \mathbb{N} \to \mathbb{N}$ by $g(n) = \lfloor (n^2 + 3)/n \rfloor$. You may assume that g is a function. Determine whether it is one-to-one, onto, neither, or both. If it is not onto, determine its range.

As always, prove all of your claims. (Some proofs are very short! Remember that the *floor function* $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x.)

Problem 5. (15 points) Section 6.1, #5(a)

Consider the function $g : \{n \in \mathbb{N} \mid n \ge 100\} \to \mathbb{N}$ by g(n) = the sum of the digits of n. Determine whether g is one-to-one, onto, neither, or both. If it is not onto, determine its range. As always, prove all of your claims.

Questions? You can ask in class or in:

My (Drop-In) Office Hours (SMUD 406):

 $\begin{array}{ll} \mbox{Mondays} & 2:00-3:30\mbox{pm} \\ \mbox{Tuesdays} & 1:45-3:15\mbox{pm} \\ \mbox{Fridays} & 1:00-2:00\mbox{pm} \end{array}$

or by appointment.

Allison Tanguay's QCenter Drop-in Hours (SMUD 208):

Mon/Wed/Fri 10:00am-noon Tue/Thu 1:30-4:30pm

Math Fellow Drop-in Hours (SMUD 006):

Mondays	6:00-7:30 pm	Aaron Cordoba
Mondays	7:30-9:00pm	John Lim
Tuesdays	6:00-7:30 pm	Aaron Cordoba
Tuesdays	7:30-9:00pm	Gretta Ineza
Wednesdays	7:30-9:00pm	John Lim
Thursdays	6:00-7:30 pm	Gretta Ineza

Also, you may email me any time at ${\tt rlbenedetto@amherst.edu}$