Homework #1

Due Friday, September 5 Monday, September 8 in Gradescope by 11:59 pm ET

- **READ** Section 1.1 in Richmond&Richmond
- WATCH Video 1: Combining More Than Two Sets (11:23) [Found on moodle site]
- WRITE AND SUBMIT solutions to the following problems.

Problem 1. (4 points) Section 1.1, #1(a,b):

- (a) True or False (and briefly explain why): {Red, White, Blue} = {White, Blue, Red}
- (b) Briefly explain what is wrong with this statement: Red is the first element of the set {Red, White, Blue}

Problem 2. (4 points) Section 1.1, #3(b-e):

In each part, fill in the blank with the appropriate symbol, \in or \subseteq . (No explanations required.)

(b) $3 = \{1, 2, 3, 4\}$

- (c) $\{3\}$ __ $\{1, 2, 3, 4\}$
- (d) $\{a\}$ __ $\{\{a\}, \{b\}, \{a, b\}\}$
- (e) $\varnothing = \{\{a\}, \{b\}, \{a, b\}\}$

Problem 3. (10 points) Section 1.1, #6(a,b,d):

Include brief justifications as you answer the following:

- (a) (2 points): How many subsets does the empty set have?
- (b) (3 points): How many subsets does the set {1} have?
- (d) (5 points): List all the subsets of the four-element set $\{1, 2, 3, 4\}$.

Problem 4. (9 points) Section 1.1, #10(a):

For each $k \in \{1, 2, ..., 20\}$, let $D_k = \{x \mid x \text{ is a prime number that divides } k\}$.

Find the sets D_1 , D_2 , D_{10} , and D_{20} . (And give brief justifications.)

[Recall/FYI: a prime number is an integer $p \ge 2$ divisible only by itself and 1. (Note that 1 is not prime, because of the $p \ge 2$ condition.) Also recall that we say m divides n if there is an integer i such that $n = m \cdot i$.]

Problem 5. (8 points) Section 1.1, #10(b(i-iii)):

With notation as in the previous problem: True or false (and briefly justify):

(i)
$$D_2 \subsetneq D_{10}$$

(ii)
$$D_7 \subseteq D_{10}$$

(iii)
$$D_{10} \subsetneq D_{20}$$

[Note: The textbook uses the symbol \subset to mean "proper subset" but I personally use \subsetneq , so I have made that symbol change in writing parts b(i) and b(iii) above.]

Questions? You can ask in class or in:

My office hours (SMUD 406):

Mon, 2:00–3:30pm; Tue, 1:45–3:15pm; Fri, 1:00-2:00pm; or by appointment.

Also, you may email me any time at rlbenedetto@amherst.edu