Solutions to Practice Problems for the Final Exam

1. Let $A = B = \mathbb{R} \setminus \{2\}$, and define $f: A \to B$ by $f(x) = \frac{2x+1}{x-2}$.

Decide whether or not f is invertible. If it is, find the inverse function.

Solution/Proof.

Yes, f is invertible and the inverse is
$$f^{-1}: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{2\}$$
 by $f^{-1}(x) = \frac{2x+1}{x-2}$.

[Side note: yes, f and f^{-1} are the same function!]

To prove this, first note that f^{-1} is indeed a function from $\mathbb{R} \setminus \{2\}$ to $\mathbb{R} \setminus \{2\}$, because we have $f^{-1} = f$, and we already know f is a function. [Or, if you want to prove it from scratch: for any $x \in \mathbb{R} \setminus \{2\}$, we have $x \neq 2$, so $f^{-1}(x)$ is defined and equals an element of \mathbb{R} . But we do **not** have $f^{-1}(x) = 2$, because if that equality did hold for some such x, that equation implies 2x + 1 = 2(x - 2), i.e., 2x + 1 = 2x - 4, and hence 1 = -4. So yes indeed, $f^{-1}(x)$ is an element of $\mathbb{R} \setminus \{2\}$.]

It remains to show the two compositions. Since $f^{-1} = f$, we can do both at once. That is, given arbitrary $x \in \mathbb{R} \setminus \{2\}$, we have $f^{-1}(f(x)) = f(f(x)) = f(f^{-1}(x))$, and this common value is

$$f(f(x)) = \frac{2\left(\frac{2x+1}{x-2}\right)+1}{\frac{2x+1}{x-2}-2} = \frac{2(2x+1)+(x-2)}{(2x+1)-2(x-2)} = \frac{4x+2+x-2}{2x+1-2x+4} = \frac{5x}{5} = x.$$
 QED

- 2. In this problem, you'll prove that $|(0,\infty)| = |[0,\infty)|$ in two different ways.
 - 2a. Write down an explicit function $f:(0,\infty)\to[0,\infty)$ and prove that it is bijective.
 - 2b. Write down (MUCH simpler) functions $g_1:(0,\infty)\to[0,\infty)$ and $g_2:[0,\infty)\to(0,\infty)$ and prove that they are injective. Now apply Schröder-Bernstein.
- (a): **Answer/Proof**. Define $f:[0,\infty)\to(0,\infty)$ by

$$f(x) = \begin{cases} x+1 & \text{if } x \in \mathbb{Z}, \\ x & \text{if } x \notin \mathbb{Z}. \end{cases}$$

Clearly $f(x) \in (0, \infty)$ for every $x \in [0, \infty)$, so f is actually defined.

To see that f is one-to-one, given $x, y \in [0, \infty)$ with f(x) = f(y). We consider two cases. First, suppose $f(x) \in \mathbb{Z}$. Then $x \in \mathbb{Z}$, as otherwise $f(x) = x \notin \mathbb{Z}$ by definition of f. Similarly, since $f(y) = f(x) \in \mathbb{Z}$, we have $y \in \mathbb{Z}$. Thus,

$$x = (x+1) - 1 = f(x) - 1 = f(y) - 1 = (y+1) - 1 = y,$$

as desired. In the second case, suppose $f(x) \notin \mathbb{Z}$. Then $x \notin \mathbb{Z}$, as otherwise we would have $f(x) = x + 1 \in \mathbb{Z}$. Similarly, $y \notin \mathbb{Z}$. Thus, x = f(x) = f(y) = y, proving that f is one-to-one.

To see that f is onto, given $y \in (0, \infty)$, we again consider two cases. First, if $y \notin \mathbb{Z}$, then $y \in [0, \infty)$ and $y \notin \mathbb{Z}$, so f(y) = y. Second, if $y \in \mathbb{Z}$, then $y \ge 1$, so $y - 1 \in [0, \infty)$. Moreover, $y - 1 \in \mathbb{Z}$, and therefore f(y - 1) = (y - 1) + 1 = y, proving that f is onto.

Thus,
$$f$$
 is bijective, and hence $|(0,\infty)| = |[0,\infty)|$. QED (a)

(b): **Answer/Proof**. Define $g_1:(0,\infty)\to[0,\infty)$ by $g_1(x)=x$. Then g_1 is clearly a function. It is also injective, because if $s,t\in(0,1)$ have $g_1(s)=g_1(t)$, then s=t immediately.

Define $g_2: [0,\infty) \to (0,\infty)$ by $g_2(x) = x + 1$. Then for any $x \in [0,\infty)$, we have $g_2(x) \ge 1 > 0$, and hence $g_2(x) \in (0,\infty)$. So g_2 is defined, and clearly well-defined. In addition, g_2 is injective, because if $s,t \in [0,\infty)$ have $g_2(s) = g_2(t)$, then s + 1 = t + 1, and so s = t.

QED (b)

3. Let $n \geq 1$ be an integer, and let A_1, A_2, \ldots, A_n be sets, each of which is countable. Prove that $A_1 \times A_2 \times \cdots \times A_n$ is countable.

Proof, by induction on n. For n = 1, we have $A_1 = A_1$ is countable by assumption,

Inductive Step: Assuming the statement is true for some $n \geq 1$, we will prove it for n + 1. Given A_1, \ldots, A_{n+1} all countable sets, we have

$$A_1 \times \cdots \times A_{n+1} = (A_1 \times \cdots \times A_n) \times A_{n+1}.$$

Now $A_1 \times \cdots \times A_n$ is countable by the inductive hypothesis, and A_{n+1} is countable by assumption. Thus, by a theorem from the book (Corollary 6.3.10) that the product of two countable sets is countable, it follows that $A_1 \times \cdots \times A_{n+1}$ is countable. QED

4. Let $T = \{f : \mathbb{R} \to \mathbb{R}\}$ be the set of all functions from \mathbb{R} to \mathbb{R} . Prove that $|\mathbb{R}| \neq |T|$.

Proof. Given a function $F: \mathbb{R} \to T$, then for each $s \in \mathbb{R}$, F(s) is itself a function $F(s): \mathbb{R} \to \mathbb{R}$. So we may define a function $g: \mathbb{R} \to \mathbb{R}$ by

$$g(x) = 1 + F(x)(x),$$

where F(x)(x) denotes the function $F(x): \mathbb{R} \to \mathbb{R}$ evaluated at the same point x. Since q is a function $g: \mathbb{R} \to \mathbb{R}$, we have $g \in T$. We claim that g is not in the image of F.

To prove the claim, given $x \in \mathbb{R}$, we need to show that $F(x) \neq g$. We see this by evaluating both functions at x: since

$$g(x) = 1 + F(x)(x) \neq F(x)(x),$$

the functions are indeed different, proving the claim. Thus, F is not onto.

Since is no onto function from \mathbb{R} to T, there is no bijective function, i.e., $|\mathbb{R}| \neq |T|$. QED

5. Define
$$f: \mathbb{R} \to (-1,1)$$
 by $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.

5a. Prove that f actually is a function from \mathbb{R} to (-1,1).

5b. Prove that f is one-to-one.

Proof. (a): Given $x \in \mathbb{R}$, we have $x^2 + 1 > 0$, so $\sqrt{x^2 + 1}$ exists and is positive. Thus, $f(x) \in \mathbb{R}$ is indeed a real number. In addition, we have $|x| = \sqrt{x^2} < \sqrt{x^2 + 1}$, so that $|f(x)| = \frac{|x|}{\sqrt{x^2 + 1}} < 1$, and hence $f(x) \in (-1, 1)$.

(b): Given $x, y \in \mathbb{R}$ such that f(x) = f(y), we have $\frac{x}{\sqrt{x^2 + 1}} = \frac{y}{\sqrt{y^2 + 1}}$, so that $x\sqrt{y^2 + 1} = y\sqrt{x^2 + 1}$. Squaring both sids, we have $x^2y^2 + x^2 = x^2y^2 + y^2$, and hence $x^2 = y^2$. Thus, |x| = |y|.

If $x \ge 0$, then $y = \frac{x\sqrt{y^2 + 1}}{\sqrt{x^2 + 1}} \ge 0$. Thus, y = |y| = |x| = x, as desired.

Otherwise, we have x < 0, in which case $y = \frac{x\sqrt{y^2 + 1}}{\sqrt{x^2 + 1}} < 0$. Then y = -|y| = -|x| = x. QED

6. Use Schröder-Bernstein to prove that:

6a.
$$|[0,1]| = |\mathbb{R}|$$
 6b. $|(0,1]| = |\mathbb{R}|$ 6c. $|\mathbb{R} \setminus \mathbb{Z}| = |\mathbb{R}|$

Proof. In each of the three cases, the set S in question — namely [0,1] in (a), or (0,1] in (b), or $\mathbb{R} \setminus \mathbb{Z}$ in (c) — contains (0,1).

Meanwhile, by Problem #5, there is an injective function $f: \mathbb{R} \to (-1,1)$. Define $g: (-1,1) \to S$ by $g(x) = \frac{1}{2}(x+1)$.

Note that g is defined, and for any $x \in (-1,1)$, we have $g(x) > \frac{1}{2}(-1+1) = 0$, and $g(x) < \frac{1}{2}(1+1) = 1$, so that g is indeed a function $g: (-1,1) \to S$. Moreover, g is injective since if g(x) = g(y), then $\frac{1}{2}(x+1) = \frac{1}{2}(y+1)$, so that x+1=y+1 and hence x=y.

Thus, we have an injective function $g \circ f : \mathbb{R} \to S$. We can also define $h : S \to \mathbb{R}$ by h(x) = x, which is defined (since any $x \in S$ has $h(x) = x \in \mathbb{R}$) and injective (since if h(x) = h(y), then x = y).

In each case, since we have injective functions $g \circ f : \mathbb{R} \to S$ and $h : S \to \mathbb{R}$, then by Schröder-Bernstein, we have $|S| = |\mathbb{R}|$.

7. Let $S = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Z} \text{ or } y \in \mathbb{Z}\}$. Prove that:

7a.
$$S = (\mathbb{Z} \times \mathbb{R}) \cup (\mathbb{R} \times \mathbb{Z})$$
. 7b. $|\mathbb{Z} \times \mathbb{R}| = |\mathbb{R}|$. 7c. $|S| = |\mathbb{R}|$.

Proof. (a): (\subseteq) Given $(x,y) \in S$, if $x \in \mathbb{Z}$, then $(x,y) \in \mathbb{Z} \times \mathbb{R} \subseteq RHS$. Otherwise, we have $y \in \mathbb{Z}$, and hence $(x,y) \in \mathbb{R} \times \mathbb{Z} \subseteq RHS$.

- (⊇) Given $(x, y) \in \text{RHS}$, we again consider two cases. If $(x, y) \in \mathbb{Z} \times \mathbb{R}$, then $x \in \mathbb{Z}$, and hence $(x, y) \in S$. Otherwise, we have $(x, y) \in \mathbb{R} \times \mathbb{Z}$, so that $y \in \mathbb{Z}$, and hence $(x, y) \in S$. QED
- (b,c): Quick Proof. [For (c); the quick proof for (b) is similar.] In class, we saw that $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$. Thus, there is a bijective function $g : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Define $f : S \to \mathbb{R} \times \mathbb{R}$ by f(x,y) = (x,y), which is clearly an injective function. Thus, $g \circ f : S \to \mathbb{R}$ is injective.

QED

Define $h: \mathbb{R} \to S$ by $h(x) = (x, 0) \in \mathbb{R} \times \mathbb{Z} \subseteq S$. Again, h is clearly an injective function.

Since there are injective functions both ways, we have $|S| = |\mathbb{R}|$, by Schröder-Bernstein.

(b): Longer Proof. [Without using the powerful fact that $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$.]

By Problem 5 (or Problem 6), there is an injective function $f: \mathbb{R} \to (0,1)$. Define $g: \mathbb{Z} \times \mathbb{R} \to \mathbb{R}$ by g(m,x) = m+f(x). We claim that g is injective. Indeed, given $(m,x), (n,y) \in \mathbb{Z} \times \mathbb{R}$ with g(m,x) = g(n,y), we have m+f(x) = n+f(y). Thus, $f(x)-f(y) = n-m \in \mathbb{Z}$. However, since $f(x), f(y) \in (0,1)$, we have |f(x)-f(y)| < 1, and hence f(x)-f(y), being an integer of absolute value less than 1, must be 0. Therefore, we also have n-m=0, i.e., m=n. Meanwhile, since f(x)=f(y) and f is injective, we have x=y. Hence, (m,x)=(n,y), completing our proof that g is injective. Meanwhile, define $h: \mathbb{R} \to \mathbb{Z} \times \mathbb{R}$ by h(x)=(0,x). Then h is also injective. After all, given $x,y \in \mathbb{R}$

with h(x) = h(y), we have (0, x) = (0, y), and hence x = y.

By Schröder-Bernstein, then, we have $|\mathbb{Z} \times \mathbb{R}| = |\mathbb{R}|$.

(c): Longer Proof. [Without using the powerful fact that $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$.]

By part (b), there's an injective function $F: \mathbb{Z} \times \mathbb{R} \to \mathbb{R}$, and by #1, there's an injective function $G: \mathbb{R} \to (0,1)$. Define $f: S \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} G(F(x,y)) & \text{if } x \in \mathbb{Z}, \\ G(F(y,x)) + 1 & \text{if } x \notin \mathbb{Z}. \end{cases}$$

Note that f is indeed defined. After all, any $(x,y) \in S$ either has $x \in \mathbb{Z}$ or $y \in \mathbb{Z}$. If $x \in \mathbb{Z}$, then F(x,y) is defined and belongs to \mathbb{R} , so $G(F(x,y)) \in (0,1) \subseteq \mathbb{R}$. Otherwise, i.e., if $x \notin \mathbb{Z}$, then we must have $y \in \mathbb{Z}$, and hence F(y,x) is defined, so $G(F(y,x)) \in (0,1)$, and hence $f(x,y) \in (1,2) \subseteq \mathbb{R}$.

[The idea is that f maps the vertical lines in S into (0,1), and it maps the horizontal lines — at least the portions that don't intersect the vertical lines — into (1,2).]

Then f is also injective, as we now prove. Given $(s,t), (x,y) \in S$ with f(s,y) = f(x,y), this common value lies in either (0,1) or (1,2). If it lies in (1,2), then we have G(F(t,s)) + 1 = G(F(y,x)) + 1, so G(F(t,s)) = G(F(y,x)). Since G and F are injective, we have (t,s) = (y,x), so that (s,t) = (x,y).

Similarly, if the common value lies in (0,1), then G(F(t,s)) = G(F(y,x)), which gives (s,t) = (x,y) by the same argument, proving our claim.

Next, define $h: \mathbb{R} \to S$ by h(x) = (0, x). Then h is also injective, as in part (b): given $x, y \in \mathbb{R}$ with h(x) = h(y), we have (0, x) = (0, y), and hence x = y.

By Schröder-Bernstein, then, we have $|S| = |\mathbb{R}|$.

8. Prove that
$$\bigcup_{n \in \mathbb{N}} \left[\frac{1}{n}, 1 + \frac{3}{n} \right] = (0, 4]$$

Proof. (\subseteq): Givens $x \in LHS$, there exists $n \in \mathbb{N}$ such that $x \in \left\lfloor \frac{1}{n}, 1 + \frac{3}{n} \right\rfloor$. Thus, we have

$$0 < \frac{1}{n} \le x \le 1 + \frac{3}{n} \le 4,$$

and hence $x \in (0, 4]$. $QED (\subseteq)$

 (\supseteq) : Given $x \in (0,4]$, so that $0 < x \le 4$, we consider two cases.

If $x \ge 1$, then $x \in [1, 4] \subseteq LHS$, since [1, 4] is the interval in the union for n = 1.

Otherwise, we have 0 < x < 1. Pick $n \in \mathbb{N}$ such that $n > \frac{1}{x}$. [For example, we could pick $n = \lceil \frac{1}{x} \rceil + 1$.]

Then
$$\frac{1}{n} < x < 1 \le 1 + \frac{3}{n}$$
, and hence $x \in \left[\frac{1}{n}, 1 + \frac{3}{n}\right] \subseteq \text{LHS}$. QED (\supseteq)

9. Prove that
$$\bigcap_{n\in\mathbb{N}} \left[\frac{1}{n}, 1 + \frac{3}{n} \right] = \{1\}$$

Proof. (\subseteq): Given $x \in LHS$, then we have, using n = 1, that $x \in [1, 4]$, so $x \ge 1$. Suppose, towards a contradiction, that x > 1. Pick $n \in \mathbb{N}$ such that $n > \frac{3}{x-1}$. [For example, we could pick $n = \left\lceil \frac{3}{x-1} \right\rceil + 1$.] Then since n, x-1 > 0, we have $x-1 > \frac{3}{n}$, and hence $x > 1 + \frac{3}{n}$. It follows that $x \notin \left[\frac{1}{n}, 1 + \frac{3}{n}\right]$, and hence $x \notin LHS$, a contradiction. Therefore, we must have $x \leq 1$.

Since
$$x \ge 1$$
 and $x \le 1$, we have $x = 1 \in \{1\}$. QED (\subseteq)

 (\supseteq) : Given $x \in \{1\}$, then given any $n \in \mathbb{N}$, we have

$$\frac{1}{n} \le 1 = x \le 1 + \frac{3}{n},$$

so
$$x \in \left[\frac{1}{n}, 1 + \frac{3}{n}\right]$$
. Thus, $x \in LHS$. QED (\supseteq)

10. Prove, from the ε -N definition, that $\lim_{n\to\infty} \frac{6n^2-7}{n^2+1}=6$

Proof. Given $\varepsilon > 0$, pick $N \in \mathbb{N}$ such that $N > 13/\varepsilon$. Given $n \ge N$, we have $N \le n \le n^2 < n^2 + 1$, so

$$\left| \frac{6n^2 - 7}{n^2 + 1} - 6 \right| = \left| \frac{6n^2 - 7 - 6n^2 - 6}{n^2 + 1} \right| = \left| \frac{-13}{n^2 + 1} \right| = \frac{13}{n^2 + 1} < \frac{13}{N} < \frac{13}{13/\varepsilon} = \varepsilon$$
 QED

11. Prove, from the ε -N definition, that $\lim_{n\to\infty} \frac{3+7n^2-6n^3}{n^3-4n} = -6$

Proof. Given $\varepsilon > 0$, pick $N_1 \in \mathbb{N}$ such that $N_1 > 14/\varepsilon$, and define $N = \max\{4, N_1\}$.

Given $n \ge N$, then $n^3 \ge 4^2 \cdot n > 8n$, so that $n^3 - 4n = \frac{n^3}{2} + \frac{n^3}{2} - 4n > \frac{n^3}{2}$. We also have $7n^2 - 24n + 3 > 6n(n-4) > 0$ and furthermore $7n^2 - 24n + 3 < 7n^2$. Therefore,

$$\left|\frac{3+7n^2-6n^3}{n^3-4n}-(-6)\right| = \left|\frac{7n^2-24n+3}{n^3-4n}\right| = \frac{7n^2-24n+3}{n^3-4n} < \frac{7n^2}{n^3/2} = \frac{14}{n} \le \frac{14}{N_1} < \frac{14}{14/\varepsilon} = \varepsilon$$
QED

12. For each of the following sequences, decide whether it converges, diverges to ∞ , diverges to $-\infty$, or diverges but not to either ∞ or $-\infty$. (And prove your claims, of course.)

12a.
$$\left(\frac{5n^3 + 7n}{2n^3 - 11}\right)_{n=1}^{\infty}$$
 12b. $\left(\frac{2n^2 - 55}{40n + 100}\right)_{n=1}^{\infty}$ 12c. $\left(\frac{3^{n+2} + 7}{3^n - 2}\right)_{n=1}^{\infty}$ 12d. $\left(7n + (-1)^n \cdot n^2\right)_{n=1}^{\infty}$

Proof. (a): We claim the sequence converges to $\frac{5}{2}$

Given $\varepsilon > 0$, pick $N_1 \in \mathbb{N}$ such that $N_1 \geq \frac{8}{\varepsilon}$, and let $N = \max\{N_1, 30\} \in \mathbb{N}$.

Given $n \ge N$, we have $14n + 55 = 16n + (55 - 2n) \le 16n + 55 - 2(30) < 16n$, and $2n^3 - 11 = n^3 + (n^3 - 11) \ge n^2 + 0 = n^2$. Thus,

$$\left| \frac{5n^3 + 7n}{2n^3 - 11} - \frac{5}{2} \right| = \left| \frac{2(5n^3 + 7n) - 5(2n^3 - 11)}{2(2n^3 - 11)} \right| = \frac{14n + 55}{2(2n^3 - 11)} < \frac{16n}{2n^2} = \frac{8}{n} \le \frac{8}{8/\varepsilon} = \varepsilon \quad \text{QED (a)}$$

(b): We claim the sequence diverges to ∞

Given M > 0, pick $N_1 \in \mathbb{N}$ with $N_1 > 42M$, and let $N = \max\{N_1, 55\} \in \mathbb{N}$.

Given $n \ge N$, we have $2n^2 - 55 \ge n^2 + n - 55 \ge n^2$, and 40n + 100 = 42n + 2(50 - n) < 42n. Thus,

$$\frac{2n^2 - 55}{40n + 100} > \frac{n^2}{42n} = \frac{n}{42} \ge \frac{N}{42} > M$$
 QED (b)

(c): We claim the sequence converges to 9

Given $\varepsilon > 0$, pick $N_1 \in \mathbb{N}$ such that $N_1 \geq \frac{50}{\varepsilon}$, and let $N = \max\{N_1, 2\} \in \mathbb{N}$.

Given $n \ge N$, we have $3^n \ge 3^2 = 9$, so $3^n - 2 = \frac{3^n}{2} + \frac{3^n - 4}{2} > \frac{3^n}{2}$. We also have $3^n > n$, so

$$\left| \frac{3^{n+2} + 7}{3^n - 2} - 9 \right| = \left| \frac{9 \cdot 3^n + 7 - 9 \cdot 3^n - 9(-2)}{3^n - 2} \right| = \frac{25}{3^n - 2} < \frac{50}{3^n} < \frac{50}{n} \le \frac{50}{50/\varepsilon} = \varepsilon \qquad \text{QED (c)}$$

(d): We claim the sequence diverges, and not even to $\pm \infty$

To see this, write the elements of the sequence as $a_n = 7n + (-1)^n \cdot n^2$.

Let (b_n) be the subsequence given by $b_n = a_{2n} = 14n + 4n^2$. We will show that (b_n) diverges to ∞ . To see this, given M > 0, pick $N \in \mathbb{N}$ with N > M. Then for any $n \ge N$, we have

$$b_n = 14n + 4n^2 > n \ge N > M,$$

proving our claim that $\lim_{n\to\infty} b_n = \infty$. Thus, the original sequence (a_n) diverges, because if it converged, then all of its subsequences would also converge (to the same limit), but the subsequence (b_n) does not.

We also have that (a_n) does not diverge to $-\infty$, because choosing M=1 (and hence -M=-1), for any $N \in \mathbb{N}$, we may select $n \geq N$ even, so that $a_n = 7n + n^2 \geq 0$, so that $a_n \not< -1$.

Finally, (a_n) also does not diverge to ∞ , because choosing M=1, for any $N \in \mathbb{N}$, we may select $n \ge \max\{N, 8\}$ odd so that $7-n \le -1$, and hence $a_n = 7n - n^2 = n(7-n) \le -n < 0$, so that $a_n \ge 1$.

13. Suppose that $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are real sequences such that $(a_n)_{n=1}^{\infty}$ is bounded and $\lim_{n\to\infty} b_n = 0$. Prove that $\lim_{n\to\infty} a_n \cdot b_n = 0$.

Proof. Let $M \in \mathbb{R}$ be a bound for (a_n) , so that for every $n \in \mathbb{N}$, we have $|a_n| \leq M$. Increasing M if necessary, we may assume that M > 0.

Given $\varepsilon > 0$, then because $\lim_{n \to \infty} b_n = 0$, there is some $N \in \mathbb{N}$ such that for all $n \geq N$, we have $|b_n - 0| < \frac{\varepsilon}{M}$.

Then for any $n \geq N$, we have

$$|a_n b_n - 0| = |a_n| \cdot |b_n| \le M \cdot |b_n| < M \cdot \frac{\varepsilon}{M} = \varepsilon.$$
 QED

Note: Alternatively, after choosing the bound M, we can define two sequence (c_n) and (d_n) , given by $c_n = M|b_n|$ and $d_n = -M|b_n|$. It is then not difficult to prove that $\lim_{n\to\infty} c_n = \lim_{n\to\infty} d_n = 0$, and also that $d_n \leq a_n \cdot b_n \leq c_n$ for every $n \in \mathbb{N}$. Thus, by the Squeeze Theorem, the desired result follows.

14. Suppose that $(a_n)_{n=1}^{\infty}$ is a convergent real sequence. Prove that $(a_n)_{n=1}^{\infty}$ is bounded.

Proof. Let $L = \lim_{n \to \infty} a_n \in \mathbb{R}$. Choosing $\varepsilon = 1 > 0$, there is some $N \in \mathbb{N}$ such that for all $n \geq N$, we have $|a_n - L| < 1$.

Let $M_1 = \max\{|a_1|, |a_2|, \dots, |a_N|\}$, and let $M = \max\{M_1, 1 + |L|\} > 0$. We claim that M is a bound for the sequence (a_n) .

To see this, given $n \in \mathbb{N}$, there are two cases. If n < N, then $|a_n| \le M_1 \le M$. Otherwise, we have $n \ge N$, in which case

$$|a_n| = |a_n - L + L| \le |a_n - L| + |L| < 1 + |L| \le M.$$
 QED

15. Define a real sequence $(a_n)_{n=1}^{\infty}$ by

$$a_1 = 0$$
, and for all $n \in \mathbb{N}$, $a_{n+1} = a_n^2 + \frac{1}{4}$.

In this problem, you'll prove that $\lim_{n\to\infty} a_n = \frac{1}{2}$, via the following steps:

15a. Prove that for every $n \in \mathbb{N}$, we have $a_{n+1} \geq a_n$.

15b. Use induction to prove that for every $n \in \mathbb{N}$, we have $0 \le a_n < \frac{1}{2}$.

15c. Prove that $\lim_{n\to\infty} a_n$ converges to some number $L\in\mathbb{R}$

15d. Justify each = sign in the following: $L^2 + \frac{1}{4} = \lim_{n \to \infty} a_n^2 + \frac{1}{4} = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} a_n = L$

15e. Conclude that $L = \frac{1}{2}$.

Proof. (a): Given $n \geq \mathbb{N}$, we have

$$a_{n+1} - a_n = a_n^2 - a_n + \frac{1}{4} = \left(a_n - \frac{1}{2}\right)^2 \ge 0.$$
 QED (a)

(b): By induction on $n \ge 1$:

Thus, $a_{n+1} \geq a_n$.

Base Case: We have $a_1 = 0 < \frac{1}{2}$ QED Base

Inductive Step: Assume it is true for some n = k. By (a) we have $a_{k+1} \ge a_k \ge 0$, proving the first inequality.

We also have
$$a_{k+1} = a_k^2 + \frac{1}{4} < \left(\frac{1}{2}\right)^2 + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
, proving the second inequality. QED (b)

(c): By parts (a) and (b), the sequence (a_n) is increasing and bounded above, so by the Monotone Sequence Theorem, it converges to some $L \in \mathbb{R}$. QED(c)

(d): By the limit laws, we have

$$\lim_{n\to\infty}\left(a_n^2+\frac{1}{4}\right)=\lim_{n\to\infty}a_n\cdot a_n+\lim_{n\to\infty}\frac{1}{4}=\left(\lim_{n\to\infty}a_n\right)\cdot\left(\lim_{n\to\infty}a_n\right)+\frac{1}{4}=L^2+\frac{1}{4},$$

By hypothesis, we have $a_{n+1} = a_n^2 + \frac{1}{4}$, and hence $\lim_{n\to\infty} a_n^2 + \frac{1}{4} = \lim_{n\to\infty} a_{n+1}$, verifying the second = sign.

The sequence $(a_{n+1})_{n=1}^{\infty} = (a_n)_{n=2}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$. Since $(a_n)_{n=1}^{\infty}$ converges to L, the subsequence converges to the same limit L, justifying the third and fourth = signs.

(e): Since
$$L^2 + \frac{1}{4} = L$$
, we have $L^2 - L + \frac{1}{4} = 0$, i.e. $\left(L - \frac{1}{2}\right)^2 = 0$, so $L - \frac{1}{2} = 0$, and hence $L = \frac{1}{2}$. QED (e)

16. Define a real sequence $(b_n)_{n=1}^{\infty}$ by

$$b_1 = 1$$
, and for all $n \in \mathbb{N}$, $b_{n+1} = b_n^2 + \frac{1}{4}$.

Prove that $\lim_{n\to\infty} b_n$ diverges to ∞ .

Proof. We claim that for all $n \ge 4$, we have $b_n \ge n - 1$. We prove this claim by induction on $n \ge 4$.

Base Case: We have
$$b_1 = 1$$
, so $b_2 = 1^2 + \frac{1}{4} = \frac{5}{4}$, so $b_3 = \frac{25}{16} + \frac{1}{4} = \frac{29}{16} > \frac{7}{4}$.

Thus,
$$b_4 > \frac{49}{16} + \frac{1}{4} = \frac{53}{16} > 3 = 4 - 1$$
. QED Base

Inductive Step: Suppose the claim holds for some $n = k \ge 4$.

Then
$$b_{k+1} = b_k^2 + \frac{1}{4} > (k-1)^2 + \frac{1}{4} > k$$
, where the last equality is because $(k-1)^2 + \frac{1}{4} - k = k^2 - 2k + 1 + \frac{1}{4} - k > k^2 - 3k = k(k-3) > 0$, since $k > 3$

QED Claim

To prove that $\lim_{n\to\infty} b_n = \infty$, given M > 0, pick $N_1 \in \mathbb{N}$ such that $N_1 > M + 1$. Let $N = \max\{N_1, 4\}$.

Given $n \ge N$, we have $b_n \ge n - 1 \ge N - 1 > (M + 1) - 1 = M$,

where the first inequality is by the claim, since $n \geq 4$.

QED

17. Define a real sequence $(c_n)_{n=1}^{\infty}$ by

$$c_1 = 2$$
, and for all $n \in \mathbb{N}$, $c_{n+1} = \frac{3c_n}{4} + \frac{3}{c_n}$.

Follow a similar strategy as in Problem 15 to prove that $\lim_{n\to\infty} c_n$ converges and equals $2\sqrt{3}$.

Proof. First, we claim that for every $n \in \mathbb{N}$, we have $2 \le c_n \le 2\sqrt{3}$. We proceed by induction on $n \ge 1$. **Base Case**: For n = 1, we have $2 = c_1 \le 2\sqrt{3}$ by definition. QED Base

Inductive Step: Assume our claim holds for some $n = k \ge 1$.

We have
$$\frac{3}{4}c_k^2 - 2\sqrt{3}c_k + 3 = \frac{3}{4}\left(c_k - \frac{2}{\sqrt{3}}\right)\left(c_k - 2\sqrt{3}\right) \le 0$$
, since $\frac{2}{\sqrt{3}} < 2 \le c_k \le 2\sqrt{3}$.
Therefore $c_{k+1} = \frac{3c_k}{4} + \frac{3}{c_k} = \frac{1}{c_k}\left(\frac{3}{4}c_k^2 + 3\right) \le \frac{1}{c_k}\left(2\sqrt{3}c_k\right) = 2\sqrt{3}$. QED Claim

Second, we further claim that for all $n \in \mathbb{N}$, we have $c_n \leq c_{n+1}$.

To see this, given any $n \in \mathbb{N}$, by our first claim we have $c_n^2 \leq (2\sqrt{3})^2 = 12$. Since we also have $c_n \geq 2 > 0$, dividing by $4c_n$ yields $\frac{c_n}{4} \leq \frac{3}{c_n}$,

and hence $c_n \leq \frac{3c_n}{4} + \frac{3}{c_n} = c_{n+1}$, proving our second claim.

Thus, (c_n) is an increasing sequence that is bounded above, and hence it converges by the Monotone Sequence Theorem to some limit $L \in \mathbb{R}$.

Because $(c_{n+1})_{n=1}^{\infty}$ is a subsequence of (c_n) , we also have $\lim_{n\to\infty} c_{n+1} = c_n$.

By the limit laws, it follows that

$$L^{2} = L \cdot L = \lim_{n \to \infty} c_{n} \cdot \lim_{n \to \infty} c_{n+1} = \lim_{n \to \infty} (c_{n} \cdot c_{n+1})$$
$$= \lim_{n \to \infty} c_{n} \left(\frac{3c_{n}}{4} + \frac{3}{c_{n}} \right) = \lim_{n \to \infty} \left(\frac{3}{4}c_{n}^{2} + 3 \right) = \frac{3}{4}L^{2} + 3.$$

Rearranging, we have $\frac{1}{4}L^2 = 3$, so that $L^2 = 12$ and hence $L = \pm \sqrt{12}$. But because $c_n > 0$ for all n, we must have $L = \sqrt{12} = 2\sqrt{3}$. QED