Practice Problems for the Final Exam

Warning: The final exam is comprehensive, but problems on this review sheet are mostly on material from Sections 6.3, 6.4, 8.3, and 8.4. (Well, there are also a few problems from old material.) So use *all three* practice problem sheets as you study for the final. As before, the problems here are, on average, more difficult than those on the exam itself will be.

1. Let $A = B = \mathbb{R} \setminus \{2\}$, and define $f: A \to B$ by $f(x) = \frac{2x+1}{x-2}$.

Decide whether or not f is invertible. If it is, find the inverse function.

(And as always, make sure to prove all of your claims.)

- 2. In this problem, you'll prove that $|(0,\infty)| = |[0,\infty)|$ in two different ways.
 - 2a. Write down an explicit function $f:(0,\infty)\to[0,\infty)$ and prove that it is bijective. (*Hint*: you'll have to use some kind of piecewise-defined function here.)
 - 2b. Write down (MUCH simpler) functions $g_1:(0,\infty)\to[0,\infty)$ and $g_2:[0,\infty)\to(0,\infty)$ and prove that they are injective. Now apply Schröder-Bernstein.
- 3. Let $n \ge 1$ be an integer, and let A_1, A_2, \ldots, A_n be sets, each of which is countable. Prove that $A_1 \times A_2 \times \cdots \times A_n$ is countable.

(Suggestion: Use Corollary 6.3.10, that $A_1 \times A_2$ is countable, and induction on n.)

- 4. Let $T = \{f : \mathbb{R} \to \mathbb{R}\}$ be the set of all functions from \mathbb{R} to \mathbb{R} . Prove that $|\mathbb{R}| \neq |T|$. (*Hint*: Given any function $F : \mathbb{R} \to T$, show that F can't be onto by constructing an element of T that F cannot possibly hit.)
- 5. Define $f : \mathbb{R} \to (-1,1)$ by $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.
 - 5a. Prove that f actually is a function from \mathbb{R} to (-1,1).
 - 5b. Prove that f is one-to-one.

[Note: In fact, f is also onto; but I am only asking you to prove that it is a one-to-one function.]

6. Use Schröder-Bernstein to prove that:

6a.
$$|[0,1]| = |\mathbb{R}|$$

6b.
$$|(0,1]| = |\mathbb{R}|$$

6c.
$$|\mathbb{R} \setminus \mathbb{Z}| = |\mathbb{R}|$$

[Suggestion: use Problem 5.]

- 7. Let $S = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Z} \text{ or } y \in \mathbb{Z}\}.$
 - 7a. Prove that $S = (\mathbb{Z} \times \mathbb{R}) \cup (\mathbb{R} \times \mathbb{Z})$.
 - 7b. Prove that $|\mathbb{Z} \times \mathbb{R}| = |\mathbb{R}|$. (Suggestion: use Schröder-Bernstein.)
 - 7c. Prove that $|S| = |\mathbb{R}|$.

(Suggestion: See if you can do it using 5b and some extra work.

There's also a quick way using the fact that $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$.

Either way, you'll almost certainly need Schröder-Bernstein.)

8. Prove that
$$\bigcup_{n\in\mathbb{N}} \left[\frac{1}{n}, 1 + \frac{3}{n} \right] = (0, 4]$$

9. Prove that
$$\bigcap_{n \in \mathbb{N}} \left[\frac{1}{n}, 1 + \frac{3}{n} \right] = \{1\}$$

10. Prove, from the
$$\varepsilon$$
-N definition, that $\lim_{n\to\infty} \frac{6n^2-7}{n^2+1} = 6$

11. Prove, from the
$$\varepsilon$$
-N definition, that $\lim_{n\to\infty} \frac{3+7n^2-6n^3}{n^3-4n} = -6$

12. For each of the following sequences, decide whether it converges, diverges to ∞ , diverges to $-\infty$, or diverges but not to either ∞ or $-\infty$. (And prove your claims, of course.)

12a.
$$\left(\frac{5n^3 + 7n}{2n^3 - 11}\right)_{n=1}^{\infty}$$
 12b. $\left(\frac{2n^2 - 55}{40n + 100}\right)_{n=1}^{\infty}$ 12c. $\left(\frac{3^{n+2} + 7}{3^n - 2}\right)_{n=1}^{\infty}$ 12d. $\left(7n + (-1)^n \cdot n^2\right)_{n=1}^{\infty}$

13. Suppose that $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are real sequences such that $(a_n)_{n=1}^{\infty}$ is bounded and $\lim_{n\to\infty} b_n = 0$. Prove that $\lim_{n\to\infty} a_n \cdot b_n = 0$.

14. Suppose that $(a_n)_{n=1}^{\infty}$ is a convergent real sequence. Prove that $(a_n)_{n=1}^{\infty}$ is bounded.

15. Define a real sequence $(a_n)_{n=1}^{\infty}$ by

$$a_1 = 0$$
, and for all $n \in \mathbb{N}$, $a_{n+1} = a_n^2 + \frac{1}{4}$.

In this problem, you'll prove that $\lim_{n\to\infty} a_n = \frac{1}{2}$, via the following steps:

15a. Prove that for every $n \in \mathbb{N}$, we have $a_{n+1} \geq a_n$.

15b. Use induction to prove that for every $n \in \mathbb{N}$, we have $0 \le a_n < \frac{1}{2}$.

15c. Prove that $\lim_{n\to\infty} a_n$ converges to some number $L\in\mathbb{R}$

15d. Justify each = sign in the following: $L^2 + \frac{1}{4} = \lim_{n \to \infty} a_n^2 + \frac{1}{4} = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} a_n = L$

15e. Conclude that $L = \frac{1}{2}$.

16. Define a real sequence $(b_n)_{n=1}^{\infty}$ by

$$b_1 = 1$$
, and for all $n \in \mathbb{N}$, $b_{n+1} = b_n^2 + \frac{1}{4}$.

(Note the similarity to the sequence in the previous problem; but we are starting with $b_1 = 1$.) Prove that $\lim_{n\to\infty} b_n$ diverges to ∞ .

(Suggestion: First prove that for every $n \ge 4$, we have $b_n \ge n - 1$.)

17. Define a real sequence $(c_n)_{n=1}^{\infty}$ by

$$c_1 = 2$$
, and for all $n \in \mathbb{N}$, $c_{n+1} = \frac{3c_n}{4} + \frac{3}{c_n}$.

Follow a similar strategy as in Problem 15 to prove that $\lim_{n\to\infty} c_n$ converges and equals $2\sqrt{3}$.

(Suggestion: Prove that for every $n \in \mathbb{N}$, we have $2 \le c_n \le 2\sqrt{3}$ and $c_n \le c_{n+1}$.)