Solutions to Practice Problems 2

1. Prove or disprove the following statement: for all integers $m, n \in \mathbb{Z}$, if $m|n^2$, then m|n.

(Dis)Proof. This is false. Let
$$m=4$$
 and $n=2$. Then $m=4 \mid 4=n^2$, but $m=4 \nmid 2=n$. QED

2. Suppose that $a, b, c \in \mathbb{Z}$ are nonzero integers such that 143a + 217b = c. Prove that gcd(a, b)|c.

Proof. Write $d = \gcd(a, b)$. Since d|a and d|b, there are integers $k, m \in \mathbb{Z}$ such that a = kd and b = md. Thus,

$$c = 143a + 217b = 143kd + 217md = (143k + 217m)d.$$

Since $143k + 217m \in \mathbb{Z}$, we have d|c.

QED

3. Prove that $4|(13^n-1)$ for every $n \in \mathbb{N}$.

Proof, by induction on n.

Base Case: For n = 1, we have $13^n - 1 = 12 = 4 \cdot 3$, which is divisible by 4.

Inductive Step: Given that it's true for $n = k \ge 1$, we may write $13^k - 1 = 4m$ for some $m \in \mathbb{Z}$, and hence

$$13^{k+1} - 1 = 13(13^k - 1) + 13 - 1 = 13(4m) + 12 = 4(13m + 3).$$

Since $13m + 3 \in \mathbb{Z}$, we have $4|(13^{k+1} - 1)$.

QED

4. Prove that $7|(10^n - 3^n)$ for every $n \in \mathbb{N}$.

Proof, by induction on n.

Base Case: For n = 1, we have $10^n - 3^n = 10 - 3 = 7 = 7 \cdot 1$, which is divisible by 7.

Inductive Step: Given that it's true for $n = k \ge 1$, we may write $10^k - 3^k = 7m$ for some $m \in \mathbb{Z}$, and hence

$$10^{k+1} - 3^{k+1} = 10(10^k - 3^k) + 10 \cdot 3^k - 3^{k+1} = 10(7m) + (10 - 3) \cdot 3^k = 7(10m + 3^k).$$

Since
$$10m + 3^k \in \mathbb{Z}$$
, we have $7|(10^{k+1} - 3^{k+1})$.

5. Let $n \in \mathbb{N}$ be a positive integer, and write its prime factorization as $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$, where p_1, p_2, \ldots, p_k are distinct primes, and $r_1, r_2, \ldots, r_k \in \mathbb{N}$. Prove that n is a perfect cube if and only if each of the integers r_1, r_2, \ldots, r_k is divisible by 3.

Proof. (\Rightarrow): Given that n is a perfect cube, there exists $m \in \mathbb{N}$ such that $m^3 = n$. Write the prime factorization of m as $m = q_1^{s_1} \cdots q_\ell^{s_\ell}$, where q_1, \ldots, q_ℓ are distinct primes, and each $s_i \in \mathbb{N}$. Then

$$p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}=n=m^3=q_1^{3s_1}\cdots q_\ell^{3s_\ell}.$$

Thus, possibly after re-ordering, the q_i 's are precisely the p_i 's, and $r_i = 3s_i$ for each i. Thus, each r_i is divisible by 3.

(\Leftarrow): Given that each r_i is divisible by 3, there are integers $s_1, \ldots, s_k \in \mathbb{N}$ such that $r_i = 3s_i$ for each i. Define

$$m = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k} \in \mathbb{N}.$$

Then

$$m^3 = p_1^{3s_1} p_2^{3s_2} \cdots p_k^{3s_k} = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} = n,$$

so that $n = m^3$ is a perfect cube.

QED

6. Let $a, b, c \in \mathbb{N}$ be positive integers. Suppose that $c = a^2$, but also $c = b^3$. Prove that there is some $n \in \mathbb{N}$ such that $c = n^6$.

Proof. Write the prime factorization of c as $c = p_1^{r_1} \cdots p_k^{r_k}$, where p_1, \ldots, p_k are distinct primes, and each $r_i \in \mathbb{N}$. By the previous problem, the fact that c is a perfect cube means that $3|r_i$ for each i. A similar argument shows, because c is a perfect square, that $2|r_i$ for each i. Thus, for each i, the prime factorization of r_i has (at least) a 2 and a 3 in it, meaning that $r_i = 6s_i$ for some $s_i \in \mathbb{N}$. Define

$$n = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k} \in \mathbb{N}.$$

Then
$$n^6 = p_1^{6s_1} p_2^{6s_2} \cdots p_k^{6s_k} = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k} = c.$$
 QED

7. Let $p, q \in \mathbb{N}$ be prime numbers. Suppose that p|q. Prove that p=q.

Proof. Since q is prime, the only elements of \mathbb{N} dividing q are 1 and q. Thus, since $p \in \mathbb{N}$ divides q, we have either p = 1 or p = q. However, $p \ge 2$ since p is prime. Thus, p = q. QED

8. Let $m, n \in \mathbb{Z}$ be positive integers. Suppose that 20|(m-7) and 20|(n-11). Prove that 20|(mn-17).

Proof. There exist $a, b \in \mathbb{Z}$ such that m - 7 = 20a and n - 11 = 20b. That is, m = 7 + 20a and n = 11 + 20b. Thus,

$$mn - 17 = (7 + 20a)(11 + 20b) - 17 = 60 + 20(11a) + 20(7b) + 20(20ab) = 20(3 + 11a + 7b + 20ab).$$

Since
$$3 + 11a + 7b + 20ab \in \mathbb{Z}$$
, we have $20|(mn - 17)$.

9. Let $a, b, c \in \mathbb{Z}$, and suppose that a|(15b+31c) and that a|15. Prove that a|c.

Proof. By hypothesis, there exist integers $m, n \in \mathbb{Z}$ such that 15b + 31c = ma and 15 = na. The first equation gives us 31c = ma - 15b, and hence c = ma - 15b - 15(2c). Thus,

$$c = ma - 15b - 15(2c) = ma - nab - 2nac = a(m - nb - 2nc).$$

Since $m - nb - 2nc \in \mathbb{Z}$, it follows that a|c.

 $_{
m QED}$

10. Let $a, b, m, n \in \mathbb{N}$, and suppose that am = bn and that gcd(a, b) = 1. Prove that there is some $k \in \mathbb{N}$ such that n = ka and m = kb.

Proof (Method 1). Write $a = p_1^{r_1} \cdots p_t^{r_t}$, where p_1, \ldots, p_t are distinct primes, and each $r_i \in \mathbb{N}$. Similarly write $b = q_1^{s_1} \cdots q_\ell^{s_\ell}$, where q_1, \ldots, q_ℓ are distinct primes, and each $s_i \in \mathbb{N}$.

Note that for each i, j, we have $p_i \neq q_j$, as otherwise p_i would be a common divisor of a and b, so that $\gcd(a, b) \geq p_i > 1$, a contradiction. Thus, the primes $p_1, \ldots, p_t, q_1, \ldots, q_\ell$ are all distinct.

Let N = am = bn. For each i = 1, ..., t, we have $p_i^{r_i}|a$, and hence $p_i^{r_i}|N$. Similarly, for each $j = 1, ..., \ell$, we have $q_j^{s_j}|b$, and hence $q_j^{s_j}|N$. Thus, the prime factorization of N includes each p_i to at least the power r_i , and each q_j to at least the power s_j . Since these primes are all distinct, it follows that N is divisible by $p_1^{r_1} \cdots p_t^{r_t} q_1^{s_1} \cdots q_\ell^{s_\ell} = ab$.

That is, there is an integer $k \in \mathbb{N}$ such that N = kab. Thus, am = N = kab, and hence, dividing by a, we have m = kb. Similarly, we have bn = N = kab, and hence n = kb.

Proof (Method 2). Since am = bn, we have a|(bn). But then, because gcd(a,b) = 1, it follows that a|n, by a theorem (e.g. from the book). That is, there exists $k \in \mathbb{Z}$ such that n = ka. Since a, n > 0, we must have k > 0, so $k \in \mathbb{N}$.

Thus, we have am = bka, and cancelling a from both sides, we have m = bk. So n = ka and m = kb, QED

Note: here's a quick proof of the theorem quoted in Method 2 above. Since gcd(a, b) = 1, there exist integers $x, y \in \mathbb{Z}$ such that xa + yb = 1. Multiplying by n, we have xan + ybn = n.

But bn = am, so xan + yam = n. That is, a(xn + ym) = n. Define $k = xn + ym \in \mathbb{Z}$; then ak = n, i.e., a|n.

- 11. Determine whether each of the following supposed functions is actually a function.
 - (a) $f:(0,\infty)\to(0,\infty)$ by $f(x)=\frac{x-1}{\lceil x\rceil}$ [$\lceil x\rceil$ denotes the ceiling function of x]
 - (b) $g: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ by $g(A) = \{n+3 \mid n \in A\}.$
 - (c) $h: \mathcal{P}(\mathbb{N}) \to \mathbb{N}$ by $h(A) = \min A$. [min A denotes the smallest element of A.]
 - (d) $k: \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$ by $k(A) = \max A$. [max A denotes the largest element of A.]
 - (e) $F: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ by $F(n) = \{m \in \mathbb{N} \mid m \text{ is a divisor of } n\}$.

Answers/Proofs. (a): Not a function. $\lceil 1/2 \rceil = 1$, so

$$f\left(\frac{1}{2}\right) = \frac{-1/2}{1} = -\frac{1}{2} \not\in (0, \infty),$$

so f does not actually map $(0, \infty)$ into $(0, \infty)$.

[Note: if we had written $f:(0,\infty)\to(-1,\infty)$, that would have been a function.]

- (b): Function. Given $A \in \mathcal{P}(\mathbb{N})$, we have $A \subseteq \mathbb{N}$. So for all $n \in A$, we have $n + 3 \in \mathbb{N}$. Thus, g(A) is indeed a defined and well-defined subset of \mathbb{N} , and hence $g(A) \in \mathcal{P}(\mathbb{N})$.
- (c): Not a function. $\emptyset \in \mathcal{P}(\mathbb{N})$, but \emptyset has no elements at all, and hence no smallest element. Thus, $h(\emptyset)$ isn't defined.
- (d): Not a function. $\mathbb{N} \in \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}$, but \mathbb{N} has no largest element, so $k(\mathbb{N})$ isn't defined.
- (e): Function. For each $n \in \mathbb{N}$, and for each $m \in \mathbb{N}$, the statement "m is a divisor of n" is indeed a statement (i.e., either true or false but not both), and hence F(n) is indeed a set, and in fact a subset of \mathbb{N} . That is, F(n) is a defined and well-defined element of $\mathcal{P}(\mathbb{N})$.
- 12. For each of the following functions, decide whether or not it is injective, and also whether or not it is surjective. If it is both, find a formula for its inverse function. Don't forget to prove everything you claim.
 - (a) $f : \mathbb{R} \setminus \{1\} \to \mathbb{R}$ by $f(x) = \frac{x}{x-1}$.
 - (b) $g: \mathbb{R} \setminus \{\pm 1\} \to \mathbb{R}$ by $g(x) = f(x^2)$.
 - (c) $h: A \to \mathbb{R}$ by $h = g|_A$, where $A = [0, 1) \cup (1, \infty)$
 - (d) $k : \mathbb{R} \to \mathbb{R}$ by $k(x) = x + \lfloor x \rfloor$.
 - (e) $F: \mathbb{R} \setminus \{\pm 1\} \to \mathbb{R}$ by $F(x) = \frac{x}{x^2 1}$

Answers/Proofs. (a) **One-to-one**: Given $x, y \in \mathbb{R} \setminus \{1\}$ with f(x) = f(y), we have x/(x-1) = y/(y-1), and so cross-multiplying, we have xy - x = xy - y. Adding x + y - xy to both sides gives x = y.

Not onto: We claim that $1 \in \mathbb{R}$ is not in the range of f. Indeed, given $x \in \mathbb{R} \setminus \{1\}$, if f(x) = 1, then x/(x-1) = 1. Multiplying by x-1 gives x = x-1, and subtracting x gives x = x-1, a contradiction. QED

(b) Not one-to-one: $-2 \neq 2$ are both in the domain, and g(-2) = f(4) = g(2). QED Not onto: Again, 1 is not in the range of g; if x is a point in the domain such that g(x) = 1, then $x^2/(x^2-1) = 1$, giving $x^2 = x^2 - 1$ and hence 0 = -1, a contradiction. QED

(c) **One-to-One**: Given $x, y \in A$ with h(x) = h(y), we have g(x) = g(y), and hence $f(x^2) = f(y^2)$. That is, $x^2/(x^2-1) = y^2/(y^2-1)$. Cross-multiplying gives $x^2y^2 - x^2 = x^2y^2 - y^2$, and so subtracting x^2y^2 gives $x^2 = y^2$. Since $x, y \ge 0$, we have x = y.

Not onto: Yet again, and for the same reason, 1 is not in the range of h. (If h(x) = 1 for some $x \in A$, then x is also in the domain of g, and so g(x) = 1, which contradicts the above.)

(d) Note: it will help to write $x = (x - \lfloor x \rfloor) + \lfloor x \rfloor$, with the observation that $x - \lfloor x \rfloor \in [0, 1)$, and $\lfloor x \rfloor \in \mathbb{Z}$. **One-to-One**: Given $x, y \in \mathbb{R}$ such that k(x) = k(y), we have

$$(x - \lfloor x \rfloor) + 2\lfloor x \rfloor = (y - \lfloor y \rfloor) + 2\lfloor y \rfloor$$
, so $2(\lfloor x \rfloor - \lfloor y \rfloor) = (y - \lfloor y \rfloor) - (x - \lfloor x \rfloor)$.

In the second equation, the left side is an even integer, while the right side is the difference of two elements of [0,1) and hence lies in (-1,1). The only even integer in that interval is 0, so both sides are 0.

Thus, |x| = |y|, and (x - |x|) = (y - |y|). Adding, we get x = y.

Not onto: We claim that 1 is not in the range of k. Given $x \in \mathbb{R}$, let $t = x - \lfloor x \rfloor \in [0, 1)$, and let $n = 2\lfloor x \rfloor$, which is an even integer. Then k(x) = n + t. If $n \geq 2$, then $k(x) \geq 2$ is not 1; and if $n \leq 0$, then k(x) < 1 is not 1.

(e) Not one-to-one: The points -1/2 and 2 are both in the domain and are different, but

$$F(-1/2) = \frac{-1/2}{(1/4) - 1} = \frac{-1/2}{-3/4} = \frac{2}{3} = \frac{2}{2^2 - 1} = F(2).$$

QED

[Note: there are a lot of ways to do this, none of them obvious, but a lot of them easy to find. I did this by arbitrarily picking x = 2 in the domain, and then solving the equation F(t) = F(2) to find the other root.]

Onto: Given $y \in \mathbb{R}$, consider two cases. First, if y = 0, then 0 is in the domain, and F(0) = 0 = y. Otherwise, if $y \neq 0$, then let $x = (1 + \sqrt{1 + 4y^2})/(2y)$, which is a real number because the denominator 2y is nonzero, and $1 + 4y^2 > 0$ has a real square root. In addition, the numerator is

$$1 + \sqrt{1 + 4y^2} > 1 + \sqrt{4y^2} = 1 + |2y| > |2y|.$$

In particular, the numerator is $not \pm 2y$, and hence x is not ± 1 . That is, x is in the domain of F. Finally, since

$$x^{2} - 1 = \frac{1 + 2\sqrt{1 + 4y^{2} + 1 + 4y^{2}}}{4y^{2}} - 1 = \frac{2 + 2\sqrt{1 + 4y^{2}}}{4y^{2}} = \frac{x}{y},$$

we have

$$F(x) = \frac{x}{x^2 - 1} = \frac{x}{x/y} = y.$$

QED

[I hope it's clear that I thought of that choice of x by just applying the quadratric formula to the equation F(x) = y.]

- 13. (a) Find the range R of the function h in #12(c). If we now view the target set of h as being R, find a formula for the inverse of h.
- (b) Do the same for the function k in #12(d).

Answers/Proofs. (a): We claim the image of h is $R = (-\infty, 0] \cup (1, \infty)$. To prove h(A) = R: (\subseteq): Given $y \in h(A)$, write y = h(x) for some $x \in A$. If $x \in [0, 1)$, then $x^2 - 1 < 0$ and $x^2 \ge 0$, so $y = x^2/(x^2 - 1) \le 0$. That is, $y \in (-\infty, 0] \subseteq R$. Otherwise, we have $x \in (1, \infty)$, so that $x^2 > x^2 - 1 > 0$; thus, $y = x^2/(x^2 - 1) > 1$, so $y \in (1, \infty) \subseteq R$.

(\supseteq): Given $y \in R$, we claim that $y/(y-1) \ge 0$. After all, $y \ne 1$, so y/(y-1) is a real number. If $y \le 0$, then y-1 < 0 also, and hence $y/(y-1) \ge 0$. Otherwise, since $y \in R$, we have y > 1, and hence y-1 > 0, so that y/(y-1) > 0, proving our claim.

Thus, we can define $x = \sqrt{y/(y-1)} \ge 0$. Note that $y \ne y-1$, and hence $x \ne 1$; so $x \in A$. And

$$h(x) = f(x^2) = f\left(\frac{y}{y-1}\right) = \frac{y/(y-1)}{[y/(y-1)]-1} = \frac{y}{y-(y-1)} = y.$$

QED

Finally, the formula for the inverse is $h^{-1}(y) = \sqrt{y/(y-1)}$. The proof of (\supseteq) above showed that $h \circ h^{-1} = \mathrm{id}_R$. Meanwhile, given $x \in A$, we have

$$h^{-1} \circ h(x) = h^{-1} \left(\frac{x^2}{x^2 - 1} \right) = \sqrt{\frac{x^2 / (x^2 - 1)}{[x^2 / (x^2 - 1)] - 1}} = \sqrt{\frac{x^2}{x^2 - (x^2 - 1)}} = \sqrt{x^2} = |x| = x,$$

where the last equality is because $x \in A$, and hence $x \ge 0$.

OED

[FYI: I thought of the set R by looking at where some test points went under h and guessing that intervals mapped to intervals.]

- (b): We claim the image of k is $R = \bigcup_{n \in \mathbb{Z}} [2n, 2n + 1)$. To prove $k(\mathbb{R}) = R$:
- (\subseteq) : Given $y \in k(\mathbb{R})$, write y = k(x) for some $x \in \mathbb{R}$. Let $m = \lfloor x \rfloor \in \mathbb{Z}$ and $t = x m \in [0, 1)$. Then

$$y = k(x) = x + m = t + 2m \in [2m, 2m + 1) \in \bigcup_{n \in \mathbb{Z}} [2n, 2n + 1).$$

(⊇): Given $y \in R$, there is some $n \in \mathbb{Z}$ such that $y \in [2n, 2n + 1)$. Letting t = y - 2n, then, we have $t \in [0, 1)$. Define $x = n + t \in \mathbb{R}$. Then |x| = n, and therefore

$$k(x) = x + n = 2n + t = y.$$

QED

Finally, [motivated by the proof of (\supseteq) above, with a little simplification I did in my scratchwork], we claim the formula for the inverse of k is

$$k^{-1}: R \to \mathbb{R}$$
 by $k^{-1}(y) = y - \frac{1}{2} \lfloor y \rfloor$.

Given $y \in R$, there is some $n \in \mathbb{Z}$ such that $y \in [2n, 2n + 1)$, so that $n = \lfloor y \rfloor$, and $y - 2n \in [0, 1)$. In particular,

$$\lfloor y - n \rfloor = \lfloor n + (y - 2n) \rfloor = n.$$

Thus,

$$k \circ k^{-1}(y) = k\left(y - \frac{1}{2}\lfloor y\rfloor\right) = k(y - n) = y - n + \lfloor y - n\rfloor = y - n + n = y,$$

proving that $k \circ k^{-1} = id_R$.

Meanwhile, given $x \in \mathbb{R}$, write x = n + t with $n \in \mathbb{Z}$ and $t \in [0, 1)$. Then

$$k^{-1}(2n+t) = 2n+t - \frac{1}{2}\lfloor 2n+t \rfloor = 2n+t - \frac{1}{2}(2n) = 2n+t - n = n+t = x,$$

and therefore

$$k^{-1} \circ k(x) = k^{-1}(x+|x|) = k^{-1}(x+n) = k^{-1}(2n+t) = x,$$

proving that $k^{-1} \circ k = id_{\mathbb{R}}$.

QED

- 14. Define $f: (-3,1] \to (5,23]$ by $f(x) = \frac{3x^2 + 23}{x^2 + 1}$.
 - (a) Prove that f is indeed a function from (-3,1] to (5,23]
 - (b) Prove that f is onto.
 - (c) Prove that the inverse image $f^{-1}((5,13])$ is $(-3,-1] \cup \{1\}$.

Proofs. (a): Given $x \in (-3,1]$, we have $f(x) \in \mathbb{R}$ since the denominator $x^2 + 1$ is nonzero.

In addition, we have $20x^2 \ge 0$, so that $3x^2 + 23 \le 23x^2 + 23$, and hence (dividing by $x^2 + 1 > 0$), we have $f(x) \le 23$.

Finally, we also have |x| < 3, and therefore $x^2 < 9$, so that $2x^2 < 18$ and hence $3x^2 + 23 > 5x^2 + 5$. Again dividing by $x^2 + 1 > 0$, it follows that f(x) > 5.

Thus, we have shown $f(x) \in (5, 23]$.

QED (a)

(b): Given $y \in (5, 23]$, define $t = \frac{23 - y}{y - 3}$, which is in \mathbb{R} since $y \neq 3$ and hence the denominator is nonzero.

Also observe that $23 - y \ge 0$ and that y - 3 > 2 > 0, so that $t \ge 0$.

Furthermore, since y > 5, we have 10y > 50, and hence 9y - 27 > 23 - y. Dividing by y - 3 > 0, it follows that 9 > t. Thus, $t \in [0, 9)$.

Define $x = -\sqrt{t} \in (-3, 0] \subseteq (-3, 1]$. Then

$$f(x) = \frac{3x^2 + 23}{x^2 + 1} = \frac{3t + 23}{t + 1} = \frac{\frac{3(23 - y)}{y - 3} + 23}{\frac{23 - y}{y - 3} + 1} = \frac{3(23 - y) + 23(y - 3)}{23 - y + (y - 3)} = \frac{20y}{20} = y$$
QED (b)

(c): (\subseteq): Given $x \in LHS$, we have $f(x) \in (5,13]$, so in particular, $f(x) \leq 13$.

That is, $\frac{3x^2 + 23}{x^2 + 1} \le 13$, and hence (multiplying by $x^2 + 1 > 0$) we have $3x^2 + 23 \le 13x^2 + 13$. It follows that $10 \le 10x^2$, and hence $x^2 \ge 1$. That is, $|x| \ge 1$.

If x > 0, then we have $x \ge 1$ but also of course x lies in (-3,1], the domain of f. Thus, $x = 1 \in (-3,-1] \cup \{1\}$.

Otherwise, we have $x \le 0$, so that $x \le -1$, and hence $x \in (-3, -1] \subseteq (-3, -1] \cup \{1\}$. QED (\subseteq): Given $x \in \text{RHS}$, we have $|x| \ge 1$ and hence $x^2 \ge 1$. Therefore, $10 \le 10x^2$, and hence $3x^2 + 23 \le 13x^2 + 13$. Dividing by $x^2 + 1 > 0$, it follows that $f(x) \le 13$. In addition, we saw in part (a) that f(x) > 5, and hence $f(x) \in (5, 13]$. That is, $x \in f^{-1}((5, 13])$. QED (\supseteq) QED (c)

15. Let $f:A\to B$ and $g:B\to C$ be functions, and let $S\subseteq A$ and $T\subseteq C$ be subsets. Prove that

$$(g \circ f)(S) = g(f(S))$$
 and $(g \circ f)^{-1}(T) = f^{-1}(g^{-1}(T)).$

Proof, First Equality. (\subseteq) Given $c \in (g \circ f)(S)$, there is some $a \in S$ such that $g \circ f(a) = c$. Thus, $f(a) \in f(S)$, and hence

$$c=g\circ f(a)=g\bigl(f(a)\bigr)\in g\bigl(f(S)\bigr).$$

 (\supseteq) Given $c \in g(f(S))$, there is some $b \in f(S)$ such that g(b) = c. Hence, there is some $a \in S$ such that f(a) = b. Thus,

$$c = g(b) = g\big(f(a)\big) = g \circ f(a) \in (g \circ f)(S).$$

Proof, Second Equality. (\subseteq) Given $a \in (g \circ f)^{-1}(T)$, we have $g \circ f(a) \in T$ by definition. Let $b = f(a) \in B$. Then

$$g(b) = g(f(a)) \in T,$$

and hence $b \in g^{-1}(T)$. Since f(a) = b, it follows that $a \in f^{-1}(g^{-1}(T))$.

 (\supseteq) Given $a \in f^{-1}(g^{-1}(T))$, let b = f(a), so that $b \in g^{-1}(T)$ by definition. Thus,

$$g \circ f(a) = g(f(a)) = g(b) \in T$$
,

and hence $a \in (g \circ f)^{-1}(T)$.

QED

- 16. Let $f:A\to A$ and $g:A\to B$ be functions. Assume that g is invertible, and let $h=g\circ f\circ g^{-1}:B\to B$.
 - (a) Prove that $h \circ h = g \circ f \circ f \circ g^{-1}$.
 - (b) If f is invertible, prove that h is invertible, and that $h^{-1} = g \circ f^{-1} \circ g^{-1}$.

Proof. (a) Both $h \circ h$ and $g \circ f \circ f \circ g^{-1}$ are clearly functions from B to B. Moreover, for any $b \in B$, we have

$$h \circ h(b) = (g \circ f \circ g^{-1}) \circ (g \circ f \circ g^{-1})(b) = g \circ f \circ (g^{-1} \circ g) \circ f \circ g^{-1}(b)$$

= $g \circ f \circ id_A \circ f \circ g^{-1}(b) = g \circ f \circ f \circ g^{-1}(b),$

where the second equality was by the associativity of \circ .

QED

(b) By Theorems from class (and from the book), g^{-1} is invertible with inverse g; and for any F, G invertible, $G \circ F$ is invertible with inverse $F^{-1} \circ G^{-1}$. Thus,

$$h^{-1} = (g \circ f \circ g^{-1})^{-1} = (g^{-1})^{-1} \circ f^{-1} \circ g^{-1} = g \circ f^{-1} \circ g^{-1}.$$

QED

17. Let $f: A \to B$ and $g: B \to C$ be functions. We saw in Theorem 6.2.6 that if f and g are both invertible, then $g \circ f: A \to C$ is invertible. Prove that the converse is false.

That is, give examples of functions $f:A\to B$ and $g:B\to C$ such that $g\circ f$ is invertible but at least one of f or g is not invertible.

(Dis)Proof. Let $A = C = \{1\}$ and $B = \{1, 2\}$. Define $f : A \to B$ by f(1) = 1, and define $g : B \to C$ by g(1) = g(2) = 1. Then $g \circ f : A \to C$ is given by

$$g \circ f(1) = g(f(1)) = g(1) = 1.$$

We claim the function $h: C \to A$ given by h(1) = 1 is the inverse of $g \circ f$. Certainly the domain and target of h are correct. Moreover, for every $x \in A$, we have x = 1, and hence

$$h \circ (g \circ f)(x) = h(g \circ f(1)) = h(1) = 1 = x.$$

Similarly, for every $x \in C$, we have x = 1, and hence

$$(g \circ f) \circ h(x) = (g \circ f)(h(1)) = g \circ f(1) = 1 = x.$$

Thus, $h = (g \circ f)^{-1}$, proving the claim. In particular, $g \circ f$ is invertible.

However, $f: A \to B$ is not onto, because $2 \in B$ is not in the range f(A). Thus, f is not invertible. QED [Note: g isn't invertible either (because it's not one-to-one), but no need to say that; we're already done. Also note: there are a lot of other correct counterexamples that could be used to prove the desired converse is false.]

18. Define
$$g : \mathbb{R} \setminus \{2\} \to \mathbb{R}$$
 by $g(x) = \frac{4x}{x-2}$. Prove that:

(a) g is not onto, (b) $g([-2,1]) = [-4,2]$, (c) $g((2,6]) = [6,\infty)$

Proofs. (a): Pick $y = 4 \in \mathbb{R}$. If there were some $x \in \mathbb{R} \setminus \{2\}$ such that g(x) = 4, then 4x/(x-2) = 4, so that 4x = 4x - 8, and hence 0 = -8, a contradiction. Thus, no such x exists, so g is not onto. QED (b): (\subseteq): Given $y \in \text{LHS}$, there is some $x \in [-2, 1]$ such that y = g(x). Since $x \ge -2$, we have $2x \ge -4$ and hence $4x \ge 2x - 4 = 2(x - 2)$. Noting that $x \le 1$, we have x - 2 < 0, and therefore $4x/(x-2) \le 2$; that is $y \le 2$. Similarly, since $x \le 1$, we have $8x \le 8$, so that $4x \le -4x + 8$. Again because x - 2 < 0, we have $y = 4x/(x-2) \ge -4$ Thus, $y \in [-4, 2]$.

(\supseteq): Given $y \in [-4, 2]$, let x = 2y/(y-4). Since $y \ge -4$, we have $2y \ge y-4$. Dividing by y-4 < 0, we have $x \le 1$. Meanwhile, since $y \le 2$, we have $4y \le 8$ and hence $2y \le -2y+8$. Again dividing by y-4 < 0, we have $x \ge -2$. Thus, $x \in [-2, 1]$. Moreover,

$$g(x) = \frac{4x}{x-2} = \frac{4 \cdot 2y/(y-4)}{2y/(y-4)-2} = \frac{8y}{2y-2(y-4)} = \frac{8y}{8} = y.$$

Hence, y = g(x) = g([-2, 1]).

 $_{
m QED}$

(\subseteq): Given $y \in \text{LHS}$, there is some $x \in (2,6]$ such that g(x) = y. Since $x \le 6$, we have $2x \le 12$ and therefore $4x \ge 6x - 12$. Dividing by x - 2 > 0, we get $g(x) \ge 6$, i.e., $y \in [6, \infty)$. QED (\subseteq)

(⊇): Given $y \in [6, \infty)$, let x = 2y/(y-4). Since $y \ge 6$, we have $24 \le 4y$, and hence $2y \le 6y-24$. Dividing by y-4>0, we have $x \le 6$. Meanwhile, we have 2y>2y-8, and hence, dividing by y-4>0, we have x > 2. Thus, $x \in (2,6]$. Moreover,

$$g(x) = \frac{4x}{x-2} = \frac{4 \cdot 2y/(y-4)}{2y/(y-4)-2} = \frac{8y}{2y-2(y-4)} = \frac{8y}{8} = y.$$

Hence, $y = g(x) = g([6, \infty))$.

QED

19. Define $F: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$ by $F(x) = \frac{5x-5}{x+1}$.

Define $G: [2,3] \to [3,4]$ by $G(x) = F(x^2)$. Prove that:

- (a) G is indeed a function.
- (b) G is bijective.

Proofs. (a): Given $x \in [2,3]$, we have $x^2 \in [4,9]$. In particular, $x^2 \neq -1$; thus, $F(x^2)$ is defined. Since $x^2 \leq 9$, we have $5x^2 - 5 \leq 4x^2 + 4$. Dividing by $x^2 + 1 > 0$, we have $G(x) \leq 4$. Meanwhile, since $x^2 \geq 4$, we have $2x^2 \geq 8$, and hence $5x^2 - 5 \geq 3x^2 + 3$. Dividing by $x^2 + 1 > 0$, we have $G(x) \geq 3$. Thus, G(x) is defined and belongs to [3,4].

(b): (one-to-one): Given $s, t \in [2,3]$ with G(s) = G(t), we have

$$\frac{5s^2 - 5}{s^2 + 1} = \frac{5t^2 - 5}{t^2 + 1}, \text{ and so } 5s^2t^2 + 5s^2 - 5t^2 - 5 = 5s^2t^2 + 5t^2 - 5s^2 - 5.$$

Thus, $10s^2 = 10t^2$, so that $s^2 = t^2$. Since s, t > 0, we have s = t.

(onto): Given $y \in [3, 4]$, let $x = \sqrt{(5+y)/(5-y)}$. Note that x is indeed defined, because $5-y \ge 5-4 > 0$, and $5+y \ge 5+3 > 0$.

Since $y \le 4$, we have $10y \le 40$, and thereore $5+y \le 45-9y$. Dividing by 5-y > 0, we have $(5+y)/(5-y) \le 9$. Taking square roots, we have $x \le 3$. Similarly, since $y \ge 3$, we have $5y \ge 15$, and thereore $5+y \ge 20-4y$. Dividing by 5-y > 0, we have $(5+y)/(5-y) \ge 4$. Taking square roots, we have $x \ge 2$. Thus, $x \in [2,3]$, and

$$G(x) = F\left(\frac{5+y}{5-y}\right) = \frac{5(5+y)/(5-y)-5}{(5+y)/(5-y)+1} = \frac{5(5+y)-5(5-y)}{(5+y)+(5-y)} = \frac{10y}{10} = y$$
 QED

20. Prove Theorem 6.2.8(a): Let $f: A \to B$ be a function, and let $C, D \subseteq A$ be subsets. If $C \subseteq D$, then (prove that) $f(C) \subseteq f(D)$.

Proof. Given $y \in f(C)$, there exists $x \in C$ such that f(x) = y. Then $x \in C \subseteq D$. Hence, $y = f(x) \in f(D)$.

QED

21. Let $h: \mathbb{R} \to \mathbb{R}$ by $h(x) = \frac{4x}{x^2 + 1}$. Prove the following equalities of sets.

(a)
$$h^{-1}([2,6)) = \{1\}$$
 (b) $h((-\infty, -1]) = [-2, 0)$

Proof. (a): (\subseteq): Given $x \in h^{-1}([2,6))$, we have $h(x) \in [2,6)$, so in particular $h(x) \geq 2$. That is, $\frac{4x}{x^2+1} \geq 2$, so that $4x \geq 2x^2+2$, since $x^2+1>0$. Thus, $2x^2-4x+2\leq 0$, i.e. $2(x-1)^2\leq 0$. But since $x \in \mathbb{R}$, we have $2(x-1)^2 \geq 0$, so that $2(x-1)^2=0$, and hence $x=1 \in \{1\}$.

(\supseteq): Given $x \in \{1\}$, we have x = 1, so that $h(x) = \frac{4}{1+1} = 2 \in [2,6)$. Therefore, $x \in h^{-1}([2,6))$. QED (a)

(b): (\subseteq): Given $y \in h((-\infty, -1])$, there exists $x \in (-\infty, -1]$ such that y = h(x). That is, $x \le -1$, and $y = \frac{4x}{x^2 + 1}$. Hence, y < 0, since $x^2 + 1 > 0$ and $4x \le -1 < 0$.

We also have $2x^2 + 4x + 2 = 2(x+1)^2 \ge 0$, and therefore $4x \ge -2x^2 - 2 = -2(x^2 + 1)$ Dividing by $x^2 + 1 > 0$, it follows that $y = h(x) \ge -2$. Thus, $y \in [-2, 0)$.

(\supseteq): Given $y \in [-2,0)$, note that we have $y \neq 0$ and $|y| \leq 2$, so that $4 - y^2 \geq 0$. Thus, we may define $x = \frac{2 + \sqrt{4 - y^2}}{y} \in \mathbb{R}$.

We claim that $x \le -1$. To see this, first observe that since $y \ge -2$, we have $-2 - y \le 0 \le \sqrt{4 - y^2}$. Thus, $2 + \sqrt{4 - y^2} \ge -y$, so that multiplying both sides by 1/y < 0 gives $x = \frac{2 + \sqrt{4 - y^2}}{y} \le -1$, as claimed. That is, $x \in (-\infty, -1]$.

Finally, we have $x^2 + 1 = \frac{4 + 4\sqrt{4 - y^2} + 4 - y^2}{y^2} + 1 = \frac{8 + 4\sqrt{4 - y^2}}{y^2} = \frac{4x}{y}$. Rearranging, we have $y = \frac{4x}{x^2 + 1} = h(x)$, so that $y \in h((-\infty, -1])$. QED

- 22. Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be real sequences, and suppose that there is some $m \in \mathbb{N}$ such that $a_m = b_m$ and $a_{m+1} = b_{m+1}$.
 - (a) If both sequences are arithmetic, prove that $a_n = b_n$ for all $n \in \mathbb{N}$.
 - (b) If both sequences are geometric, prove that $a_n = b_n$ for all $n \in \mathbb{N}$.

Proof. (a): By hypothesis, there are constants $c, d, s, t \in \mathbb{R}$ such that for every $n \in \mathbb{N}$, we have $a_n = cn + d$ and $b_n = sn + t$. Thus,

$$c = (c(m+1) + d) - (cm + d) = a_{m+1} - a_m = b_{m+1} - b_m = (s(m+1) + d) - (sm + d) = s,$$

and therefore also

$$d = (cm + d) - cm = a_m - cm = b_m - sm = (sm + t) - sm = t.$$

Hence, for any $n \in \mathbb{N}$, we have $a_n = cn + d = sn + t = b_n$. QED (a)

(b): By hypothesis, there are constants $c, r, d, s \in \mathbb{R}$ such that for every $n \in \mathbb{N}$, we have $a_n = cr^n$ and $b_n = ds^n$.

If either c=0 or r=0, then $ds^m=b_m=a_m=0$, so that either d=0 or s=0. Conversely, if either d=0 or s=0, then $cr^m=a_m=b_m=0$, so that c=0 or r=0. In that case, then $a_n=0=b_n$ for all $n \in \mathbb{N}$, and we are done.

Thus, we may assume that $c, d, r, s \neq 0$. We have

$$r = \frac{cr^{m+1}}{cr^m} = \frac{a_{m+1}}{a_m} = \frac{b_{m+1}}{b_m} = \frac{ds^{m+1}}{ds^m} = s,$$

and therefore also

$$c = \frac{cr^m}{r^m} = \frac{a_m}{r^m} = \frac{b_m}{s^m} = \frac{ds^m}{s^m} = d.$$

Hence, for any $n \in \mathbb{N}$, we have $a_n = cr^n = ds^n = b_n$.

QED (b)

- 23. Let $(a_n)_{n=1}^{\infty}$ be a real sequence. Suppose that for $n \in \mathbb{N}$, we have $|a_n| \leq 1000$.
 - (a) If $(a_n)_{n=1}^{\infty}$ is arithmetic, prove that it is a constant sequence.
 - (b) Show, by example, that if $(a_n)_{n=1}^{\infty}$ is geometric, it is **not** necessarily constant.

Proof. (a): By hypothesis, there are constants $b, c \in \mathbb{R}$ such that for all $n \in \mathbb{N}$, we have $a_n = bn + c$. We claim that b=0. To prove this, suppose not. Then there is an integer $m\in\mathbb{N}$ such that m>1 + 2000/|b|. Hence,

$$|a_m - a_1| = |(bm + c) - (b + c)| = |b|(m - 1) > |b| \cdot \frac{2000}{|b|} = 2000.$$

However, since $a_1, a_m \in [-1000, 1000]$, we have $|a_m - a_1| \le 2000$, contradicting the previous line.

Thus, we must have b=0, as claimed. Therefore, for all $n\in\mathbb{N}$, we have $a_n=c$, i.e., the sequence is constant. QED (a)

(b): Let $a_n = (-1)^n$, so that $(a_n)_{n=1}^{\infty}$ is geometric with $a_n = cr^n$ for c = 1 and r = -1. We have $|a_n|=1\leq 1000$ for all $n\in\mathbb{N}$, but $a_1=-1\neq 1=a_2$, so that sequence is not constant.

[Note: There are many other examples. For any choice of $r \in [-1, 1)$ and any $c \in \mathbb{R}$ such that $|cr| \leq 1000$, we have $|cr^n| \leq |cr| \leq 1000$ for all $n \in \mathbb{N}$.

24. Let $(a_n)_{n=1}^{\infty}$ be a strictly decreasing real sequence. Prove that any subsequence of $(a_n)_{n=1}^{\infty}$ is also strictly decreasing.

Proof. Given a subsequence $(a_{n_i})_{i=1}^{\infty}$, we have $n_1 < n_2 < n_3 < \cdots$ by definition. For each $i \geq 1$, we have $a_{n_i} > a_{n_{i+1}}$ because $n_i < n_{i+1}$ and $(a_n)_{n=1}^{\infty}$ is strictly decreasing. Thus, the subsequence $(a_{n_i})_{i=1}^{\infty}$ is strictly decreasing.

25. Let $(a_n)_{n=1}^{\infty}$ be a sequence. For each of the functions $f:\mathbb{N}\to\mathbb{N}$ below, determine whether or not $(b_n)_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$, where $b_n = a_{f(n)}$. (a) $f(n) = 5^n + n!$ (b) $f(n) = n^2 - 4n + 8$ (c) $f(n) = n^2 - 2n + 7$

(a)
$$f(n) = 5^n + n!$$

(b)
$$f(n) = n^2 - 4n + 8$$

(c)
$$f(n) = n^2 - 2n + 7$$

Proof. (a): YES, subsequence as follows.

Given $n \in \mathbb{N}$, we have $(n+1)! = (n+1) \cdot n! \ge n!$ and $5^{n+1} > 5^n$. Thus, f(n+1) > f(n). QED (a)

(b): NO, not subsequence as follows.

We have $f(1) = 5 \ge 4 = f(2)$, so f is not strictly increasing, so (b_n) is not a subsequence. QED (b)

(a): YES, subsequence as follows.

Given $n \in \mathbb{N}$, we have

$$f(n+1)-f(n)=(n+1)^2-2(n+1)+7-(n^2-2n+7)=n^2+2n+1-2n-2+7-n^2+2n-7=2n-1>0.$$

Thus,
$$f(n+1) > f(n)$$
. QED (c)

26. Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Suppose that (a_n) is a subsequence of (b_n) , and that (b_n) is a subsequence of (c_n) . Prove that (a_n) is a subsequence of (c_n) .

Proof. Because (b_n) is a subsequence of (c_n) , there is a strictly increasing sequence $(n_j)_{j=1}^{\infty}$ of positive integers such that $b_j = c_{n_j}$ for each $j \in \mathbb{N}$.

Similarly, because (a_n) is a subsequence of (b_n) , there is a strictly increasing sequence $(m_i)_{i=1}^{\infty}$ of positive integers such that $a_i = b_{m_i}$ for each $i \in \mathbb{N}$.

For each integer $i \in \mathbb{N}$, define $N_i = n_{m_i} \in \mathbb{N}$. Then for each $i \in \mathbb{N}$, we have $m_{i+1} > m_i$ (since (m_i) is strictly increasing), and hence

$$N_{i+1} = n_{m_{(i+1)}} > n_{m_i} = N_i,$$

since (n_j) is strictly increasing. Thus, $(N_i)_{i=1}^{\infty}$ is a strictly increasing sequence of positive integers. By definition, then, $(c_{N_i})_{i=1}^{\infty}$ is a subsequence of (c_n) . In addition, for each $i \in \mathbb{N}$, we have

$$a_i = b_{m_i} = c_{n_{m_i}} = c_{N_i},$$

so that (a_i) is indeed a subsequence of (c_n) .

QED

27. Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Suppose that there are integers $M, N \ge 1$ such that

- for all $n \geq M$, we have $a_n \leq b_n$, and
- for all $n \geq N$, we have $b_n \leq c_n$.

Prove that there is an integer $K \geq 1$ such that for all $n \geq K$, we have $a_n \leq c_n$.

Proof. Let $K = \max\{M, N\} \in \mathbb{N}$. Given an integer $n \geq K$, we have $n \geq M$ and $n \geq N$. Therefore $a_n \leq b_n \leq c_n$.

28. Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers, and let $(b_n)_{n=1}^{\infty}$ be a strictly increasing geometric sequence of positive integers, so that $(a_{b_n})_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$.

If $(a_n)_{n=1}^{\infty}$ is a strictly increasing geometric sequence, prove that the subsequence $(a_{b_n})_{n=1}^{\infty}$ is definitely **not** geometric.

Proof. Since the two sequences are both geometric, there are real numbers $r, s \in \mathbb{R}$ such that for every $n \geq 2$, we have $a_n = a_1 r^{n-1}$ and $b_n = b_1 s^{n-1}$.

Since $a_2 > a_1$, we have $a_1(r-1) > 0$. In particular, $a_1 \neq 0$ and $r \neq 1$. Since $a_3 > a_2$, we also have $a_1(r^2 - r) > 0$. Dividing by $a_1(r-1) > 0$, it follows that r > 0.

By similar reasoning applied to the strictly increasing sequence (b_n) , we also have $b_1 \neq 0$ and $s \neq 1$. Suppose (towards a contradiction) that the subsequence (a_{b_n}) were geometric. Then the ratio of the first two terms $a_{b_1} = a_1 r^{b_1-1}$ and $a_{b_2} = a_1 r^{b_2-1}$ would equal the ratio of the third term $a_{b_3} = a_1 r^{b_3-1}$ and the second term. (None of these terms is 0, since $a_1, r \neq 0$.) That is,

$$r^{b_2-b_1} = \frac{a_1 r^{b_2-1}}{a_1 r^{b_1-1}} = \frac{a_1 r^{b_3-1}}{a_1 r^{b_2-1}} = r^{b_3-b_2}.$$

Since r > 0 with $r \neq 1$, it follows that $b_2 - b_1 = b_3 - b_2$, and hence $b_1(s-1) = b_1(s^2 - s)$. Dividing both sides by $b_1(s-1) \neq 0$, we have 1 = s, a contradiction. QED

29. Give an example of a real, non-constant, geometric sequence $(a_n)_{n=1}^{\infty}$, and a strictly increasing geometric sequence of positive integers $(b_n)_{n=1}^{\infty}$ such that the subsequence $(a_{b_n})_{n=1}^{\infty}$ is also geometric.

Solution/Proof. Let $a_n = (-1)^n$ for all $n \in \mathbb{N}$, and let $b_n = 2^n$ for all n. Then both (a_n) and (b_n) are real, geometric sequences (since -1 and 2 are real constants). Moreover, b_n is in fact a sequence of positive integers, since $2^n \in \mathbb{N}$ for all $n \in \mathbb{N}$.

We also have $a_1 = -1 \neq 1 = a_2$, so (a_n) is non-constant. And for every $n \in \mathbb{N}$, we have

$$b_{n+1} = 2^{n+1} = 2 \cdot 2^n > 2^n = b_n,$$

so that (b_n) is strictly increasing. Finally, for all $n \in \mathbb{N}$, we have

$$a_{b_n} = (-1)^{b_n} = (-1)^{2^n} = 1 = 1^n,$$

so that $(a_{b_n}) = (1^n)$ is a (constant) geometric sequence.

QED

Note: More generally, we could have picked $a_n = a(-1)^n$ (where $a \in \mathbb{R} \setminus \{0\}$ is a nonzero constant), and $b_n = k^n$ (where $k \geq 2$ is a constant integer). But those are the only examples. In particular, the only way to get this to work is to have the ratio r for (a_n) to be r = -1, so that (a_n) is nonconstant but (a_{b_n}) is constant and hence geometric.