Math 220, Section 03, Fall 2025 Professor Rob Benedetto
Solutions to Practice Problems 2

1. Prove or disprove the following statement: for all integers m,n € Z, if m|n?, then m|n.
(Dis)Proof. This is false. Let m =4 and n = 2. Then m = 4|4 =n?, but m =412 =n. QED

2. Suppose that a,b, ¢ € Z are nonzero integers such that 143a + 217b = ¢. Prove that ged(a, b)|c.

Proof. Write d = ged(a,b). Since d|a and d|b, there are integers k, m € Z such that a = kd and b = md.
Thus,
¢ = 143a 4 217b = 143kd + 217md = (143k + 217m)d.

Since 143k + 217m € Z, we have d|c. QED

3. Prove that 4[(13™ — 1) for every n € N.

Proof, by induction on n.

Base Case: For n =1, we have 13" — 1 =12 =4 - 3, which is divisible by 4.

Inductive Step: Given that it’s true for n = k > 1, we may write 13¥ — 1 = 4m for some m € Z, and

hence
136+ _ 1 = 13(13k —1)4+13—-1=13(4m) + 12 = 4(13m + 3).

Since 13m + 3 € Z, we have 4|(13*+1 —1). QED

4. Prove that 7|(10™ — 3™) for every n € N.

Proof, by induction on n.

Base Case: For n =1, we have 10" — 3" =10—-3 =7 =7 -1, which is divisible by 7.

Inductive Step: Given that it’s true for n = k > 1, we may write 10¥ — 3¥ = 7m for some m € Z, and
hence

108+ — 3R+ — 10(10% — 3%) + 10 - 3F — 3¥F1 = 10(7m) + (10 — 3) - 3F = 7(10m + 3%).

Since 10m + 3% € Z, we have 7|(10F+1 — 3k+1), QED

5. Let n € N be a positive integer, and write its prime factorization as n = pi'p5?---p*, where
P1, D2, ..., P are distinct primes, and r1,79,...,7%, € N. Prove that n is a perfect cube if and only if
each of the integers rq,79,..., 7 is divisible by 3.

Proof. (=): Given that n is a perfect cube, there exists m € N such that m3 = n. Write the prime
factorization of m as m = ¢j* - - - ¢,*, where qi,...,q are distinct primes, and each s; € N. Then

T1,.T Tk o__ _ .3 _ 3s 3sp

Thus, possibly after re-ordering, the ¢;’s are precisely the p;’s, and r; = 3s; for each i. Thus, each r; is
divisible by 3.

(«<=): Given that each r; is divisible by 3, there are integers s, ..., s € N such that r; = 3s; for each i.
Define
m=pi'ps?---ppk € N
Then
m® = pips . pith = PPl plk =,

3

so that n = m? is a perfect cube. QED



6. Let a,b,c € N be positive integers. Suppose that ¢ = a?, but also ¢ = b3. Prove that there is some
n € N such that ¢ = nS.

Proof. Write the prime factorization of ¢ as ¢ = pi'--- p};’“, where p1,...,p; are distinct primes, and
each r; € N. By the previous problem, the fact that ¢ is a perfect cube means that 3|r; for each 7. A
similar argument shows, because ¢ is a perfect square, that 2|r; for each i. Thus, for each i, the prime
factorization of r; has (at least) a 2 and a 3 in it, meaning that r; = 6s; for some s; € N. Define

n=pip?---pr e N

651 659 . 6Sg 1,72
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Then n® = p*1p5™ ... pp™ = piiph? ... p* = c. QED

7. Let p,q € N be prime numbers. Suppose that p|g. Prove that p = q.

Proof. Since ¢ is prime, the only elements of N dividing ¢ are 1 and ¢. Thus, since p € N divides ¢, we
have either p =1 or p = ¢q. However, p > 2 since p is prime. Thus, p = q. QED

8. Let m,n € Z be positive integers. Suppose that 20|(m — 7) and 20|(n — 11). Prove that 20|(mn — 17).

Proof. There exist a,b € Z such that m — 7 = 20a and n — 11 = 20b. That is, m = 7 4+ 20a and
n =11 + 20b. Thus,

mn — 17 = (7 + 20a)(11 + 20b) — 17 = 60 + 20(11a) + 20(7b) + 20(20ab) = 20(3 + 11a + 7b + 20ab).

Since 3 4+ 11a + 7b + 20ab € Z, we have 20|(mn — 17). QED

9. Let a,b, c € Z, and suppose that a|(15b + 31¢) and that a|15. Prove that alc.

Proof. By hypothesis, there exist integers m,n € Z such that 150 + 31¢ = ma and 15 = na. The first
equation gives us 31¢ = ma — 15b, and hence ¢ = ma — 150 — 15(2¢). Thus,

¢ =ma — 15b — 15(2¢) = ma — nab — 2nac = a(m — nb — 2nc).

Since m — nb — 2nc € Z, it follows that alc. QED

10. Let a,b,m,n € N, and suppose that am = bn and that gcd(a,b) = 1. Prove that there is some k € N
such that n = ka and m = kb.

Proof (Method 1). Write a = p}' - - - p;*, where p1, ..., p; are distinct primes, and each r; € N. Similarly
write b = g7 - -~ ¢,*, where qi,...,q are distinct primes, and each s; € N.

Note that for each 4, j, we have p; # ¢;, as otherwise p; would be a common divisor of a and b, so that
ged(a,b) > p; > 1, a contradiction. Thus, the primes p1,...,ptq1, ..., qe are all distinct.

Let N = am = bn. For each ¢ = 1,...,t, we have p;’|a, and hence p;’|N. Similarly, for each j =1,...,¢,
we have q;’j |b, and hence q;j |N. Thus, the prime factorization of N includes each p; to at least the power
r;, and each g; to at least the power s;. Since these primes are all distinct, it follows that N is divisible
by Pyt pitgit -+ ¢St = ab.

That is, there is an integer k € N such that N = kab. Thus, am = N = kab, and hence, dividing by a,
we have m = kb. Similarly, we have bn = N = kab, and hence n = kb. QED

Proof (Method 2). Since am = bn, we have a|(bn). But then, because ged(a,b) = 1, it follows that
a|n, by a theorem (e.g. from the book). That is, there exists k € Z such that n = ka. Since a,n > 0, we
must have k£ > 0, so k € N.

Thus, we have am = bka, and cancelling a from both sides, we have m = bk. So n = ka and m = kb,

QED



Note: here’s a quick proof of the theorem quoted in Method 2 above. Since ged(a,b) = 1, there exist
integers x,y € Z such that xa + yb = 1. Multiplying by n, we have xan + ybn = n.

But bn = am, so xan + yam = n. That is, a(zn + ym) = n. Define k = zn + ym € Z; then ak = n, i.e.,
aln.

11. Determine whether each of the following supposed functions is actually a function.

<aﬁ@w%MWMWﬂm—xj
b) P(N) — P(N) by g(A) = {n +3 | n € A}.
)

g:
¢) h:P(N) = N by h(A) = min A. [min A denotes the smallest element of A.]

d) k: P(N)\ {2} = N by k(A) = max A. [max A denotes the largest element of A.]
e) F:N— P(N) by F(n) ={m € N|m is a divisor of n}.

Answers/Proofs. (a): Not a function. [1/2] =1, so

1(5) =" =0

[[x] denotes the ceiling function of x]

(
(
(
(

so f does not actually map (0, 00) into (0, 00).

[Note: if we had written f : (0,00) = (—1,00), that would have been a funciton.]

(b): Function. Given A € P(N), we have A C N. So for all n € A, we have n + 3 € N. Thus, g(A) is
indeed a defined and well-defined subset of N, and hence g(A) € P(N).

(c): Not a function. @ € P(N), but @ has no elements at all, and hence no smallest element. Thus, h(9)
isn’t defined.

(d): Not a function. N € P(N) \ {@}, but N has no largest element, so k(N) isn’t defined.

(e): Function. For each n € N, and for each m € N, the statement “m is a divisor of n” is indeed a
statement (i.e., either true or false but not both), and hence F'(n) is indeed a set, and in fact a subset of
N. That is, F'(n) is a defined and well-defined element of P(N).

12. For each of the following functions, decide whether or not it is injective, and also whether or not it
is surjective. If it is both, find a formula for its inverse function. Don’t forget to prove everything you

claim.
T

x—1

() f R~ {1} = R by f(z) =

(b) g: R~ {£1} = R by g(z) = f(z?).

(¢c) h: A— R by h=g|a, where A =1[0,1) U (1, 00)
(d) k:R—=Rby k(zx)=a+ |z].
(e)F:R\{il}%RbyF(x):x;v_l

Answers/Proofs. (a) One-to-one: Given z,y € R~ {1} with f(z) = f(y), we have z/(x — 1) =
y/(y — 1), and so cross-multiplying, we have zy — x = zy — y. Adding x + y — xy to both sides gives
T =1y. QED
Not onto: We claim that 1 € R is not in the range of f. Indeed, given x € R~ {1}, if f(z) = 1, then
x/(x — 1) = 1. Multiplying by = — 1 gives x = = — 1, and subtracting = gives 0 = —1, a contradiction.
QED

(b) Not one-to-one: —2 # 2 are both in the domain, and g(—2) = f(4) = ¢g(2). QED
Not onto: Again, 1 is not in the range of g; if z is a point in the domain such that g(xz) = 1, then
2?/(z% — 1) = 1, giving 2% = 22 — 1 and hence 0 = —1, a contradiction. QED



(c) One-to-One: Given z,y € A with h(x) = h(y), we have g(z) = g(y), and hence f(x?) = f(y?). That
is, 22/(2? — 1) = y?/(y?> — 1). Cross-multiplying gives x?y? — 22 = x?y? — y2, and so subtracting z%y?

gives 2 = y%. Since z,y > 0, we have x = 3. QED
Not onto: Yet again, and for the same reason, 1 is not in the range of h. (If A(z) = 1 for some x € A,
then x is also in the domain of g, and so g(z) = 1, which contradicts the above.) QED

(d) Note: it will help to write z = (z — |x|) + | x|, with the observation that x — |z] € [0,1), and |z | € Z.
One-to-One: Given z,y € R such that k(x) = k(y), we have

(z —|z]) +2[z] = (y = ly]) +2ly), so 2(lz] - [y)) = (v = ly)) — (= - [=]).

In the second equation, the left side is an even integer, while the right side is the difference of two elements
of [0,1) and hence lies in (—1,1). The only even integer in that interval is 0, so both sides are 0.

Thus, |z] = |y], and (z — |z]) = (y — |y]). Adding, we get x = y. QED
Not onto: We claim that 1 is not in the range of k. Given z € R, let t = z — |z| € [0,1), and let
n = 2|z, which is an even integer. Then k(x) =n+t. If n > 2, then k(x) > 2 is not 1; and if n <0,
then k(x) < 1 is not 1. QED

(e) Not one-to-one: The points —1/2 and 2 are both in the domain and are different, but

/2 —1/2 2 2

F(_l/Q):(1/_4)—1:—3/4_5222—1:

F(2).

QED
[Note: there are a lot of ways to do this, none of them obvious, but a lot of them easy to find. I did this
by arbitrarily picking x = 2 in the domain, and then solving the equation F'(t) = F'(2) to find the other
root.|
Onto: Given y € R, consider two cases. First, if y = 0, then 0 is in the domain, and F(0) =0 = y.
Otherwise, if y # 0, then let x = (1 + /1 + 4y?)/(2y), which is a real number because the denominator
2y is nonzero, and 1 + 432 > 0 has a real square root. In addition, the numerator is

T+ V1 +492 > 1+ 42 =1+ 2y > [29].

In particular, the numerator is not +2y, and hence x is not £1. That is, z is in the domain of F'. Finally,

since
2 1421+ 4y2 + 1+ 442 o 2+ 24/1 + 492 oz
4y? 4y? y’
we have . .
F = —_— = .
(@)= 5 oy Y

QED
[I hope it’s clear that I thought of that choice of x by just applying the quadratric formula to the equation
F(z)=y]

13. (a) Find the range R of the function h in #12(c). If we now view the target set of h as being R, find
a formula for the inverse of h.

(b) Do the same for the function k in #12(d).

Answers/Proofs. (a): We claim the image of h is R = (—o00,0] U (1,00). To prove h(A) = R:

(C): Given y € h(A), write y = h(z) for some z € A. If z € [0,1), then 22 — 1 < 0 and 2? > 0, so
y=a22/(z% —1) <0. That is, y € (—o0,0] C R. Otherwise, we have = € (1,00), so that 22 > 2% — 1 > 0;
thus, y = 22/(z%2 —1) > 1,s0 y € (1,00) C R.



(2): Given y € R, we claim that y/(y — 1) > 0. After all, y # 1, so y/(y — 1) is a real number. If y <0,
then y —1 < 0 also, and hence y/(y — 1) > 0. Otherwise, since y € R, we have y > 1, and hence y —1 > 0,
so that y/(y — 1) > 0, proving our claim.

Thus, we can define z = \/y/(y — 1) > 0. Note that y # y — 1, and hence = # 1; so z € A. And

y y/(y—1) y
© =1 = (55) = o011 = 76T

QED

Finally, the formula for the inverse is h~ Vy/(y —1). The proof of (2) above showed that

hoh™' =idr. Meanwhile, given z € A, we have

2 2/(22 — 1) 22
hil h = h,il i g il == . -
o h(z) (x2 - 1) \/[xz/(x2 —1] -1 \#@—(@2-1) = Va? =la| ==,
where the last equality is because x € A, and hence x > 0. QED

[FYT: T thought of the set R by looking at where some test points went under h and guessing that intervals
mapped to intervals.]

(b): We claim the image of k is R = U [2n,2n 4 1). To prove k(R) = R:
nez
(9): Given y € k(R), write y = k(z) for some x € R. Let m = |z] € Z and t =2z —m € [0,1). Then

y=k(z)=xz+m=t+2me 2m,2m+1) € U[Zn,2n+1).
nez

(2): Given y € R, there is some n € Z such that y € [2n,2n + 1). Letting t = y — 2n, then, we have
€ [0,1). Define z =n+t € R. Then |z] = n, and therefore

k(r)=x4+n=2n+t=y.

QED
Finally, [motivated by the proof of (2) above, with a little simplification I did in my scratchwork], we
claim the formula for the inverse of k is
1

FR—-R by KNy) =y - 5l

Given y € R, there is some n € Z such that y € [2n,2n + 1), so that n = |y|, and y —2n € [0,1). In
particular,

ly—n]=|n+(y—2n)] =n
Thus,
1 1
kok (y)=k<y—fLyJ) —k(y—n)=y—n+ly—nl=y—-n+n=y,

proving that ko k= = idp.
Meanwhile, given x € R, write z =n + ¢ with n € Z and ¢ € [0,1). Then

1 1
k*1(2n+t):2n+t—§L2n+tj :2n+t—5(2n):2n+t—n:n+t:x,

and therefore
klok(z) =k (z+4 z)) =k z+n)=k'2n+1t) =

proving that k! o k = idg. QED
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14. Define f: (=3,1] — (5,23] by f(x) = W

(a) Prove that f is indeed a function from (—3, 1] to (5, 23]

(b) Prove that f is onto.

(c) Prove that the inverse image f~1((5,13]) is (=3, —1] U {1}.
Proofs. (a): Given x € (—3,1], we have f(z) € R since the denominator 22 + 1 is nonzero.
In addition, we have 2022 > 0, so that 322 + 23 < 2322 4 23, and hence (dividing by 2%+ 1 > 0), we have
f(z) < 23.
Finally, we also have |z| < 3, and therefore 22 < 9, so that 222 < 18 and hence 322 +23 > 522 +5. Again
dividing by 22 + 1 > 0, it follows that f(z) > 5.
Thus, we have shown f(x) € (5,23]. QED (a)
-y

2
(b): Given y € (5,23], define t = 3_

Also observe that 23 —y > 0 and Zéhat y—3>2>0,sothat t > 0.

Furthermore, since y > 5, we have 10y > 50, and hence 9y — 27 > 23 —y. Dividing by y —3 > 0, it follows
that 9 > ¢t. Thus, ¢ € [0,9).

Define z = —/t € (=3,0] C (—3,1]. Then

, which is in R since y # 3 and hence the denominator is nonzero.

73(23_21)4-23
@) 322423 3t+23 y—3 3(23—y)+23(y—3) 20y
xT) = - — = = —— =
x2+1 t+1 23—Z/+1 23—y -+ (y—3) 20
y—3

QED (b)
(¢): (©): Given x € LHS, we have f(x) € (5,13], so in particular, f(z) < 13.

322+ 23
That is, % < 13, and hence (multiplying by 2% + 1 > 0) we have 322 + 23 < 1322 + 13. It follows
x

that 10 < 1022, and hence 22 > 1. That is, |z| > 1.

If x > 0, then we have x > 1 but also of course z lies in (—3,1], the domain of f. Thus, z = 1 €
(=3,—-1]u{1}.

Otherwise, we have x < 0, so that x < —1, and hence z € (-3, —1] C (—3,—1] U {1}. QED (Q)
(D): Given x € RHS, we have |z| > 1 and hence 2> > 1. Therefore, 10 < 1022, and hence 322 + 23 <
1322 + 13. Dividing by 22 + 1 > 0, it follows that f(x) < 13. In addition, we saw in part (a) that
f(z) > 5, and hence f(x) € (5,13]. That is, x € f~1((5,13]). QED (D) QED (c)

15. Let f: A — B and g: B — C be functions, and let S C A and T" C C be subsets. Prove that
(g0 £)(8)=g(f(8)) and (go f)~H(T)=f"" (g~ (T)).

Proof, First Equality. (C) Given ¢ € (g o f)(S), there is some a € S such that g o f(a) = ¢. Thus,
f(a) € f(S), and hence
c=go f(a) = g(f(a)) € g(f(9)).
(2) Given ¢ € g(f(95)), there is some b € f(S) such that g(b) = c¢. Hence, there is some a € S such that
(a) = b. Thus,
c=g(b) =g(f(a)) = go f(a) € (g0 )(S).

Proof, Second Equality. (C) Given a € (go f)"'(T), we have g o f(a) € T by definition. Let
b= f(a) € B. Then



and hence b € g~ 1(T). Since f(a) = b, it follows that a € f~1(g~1(T)).
(D) Given a € f~ (g~ (T)), let b = f(a), so that b € g~!(T) by definition. Thus,

go f(a)=g(fla)) =g(b) €T,
and hence a € (go f)~1(T). QED

16. Let f : A — Aand g : A — B be functions. Assume that g is invertible, and let h = gofog™' : B — B.
(a) Prove that hoh =go fo fog™!.
(b) If f is invertible, prove that h is invertible, and that h~! = go f~to gL

Proof. (a) Both hoh and go fo fog™! are clearly functions from B to B. Moreover, for any b € B, we

have
hoh(b)=(gofog t)o(gofog )b)=gofolg tog)ofog ()
=gofoidsofog™i(b)=gofofog ' (b),
where the second equality was by the associativity of o. QED

(b) By Theorems from class (and from the book), g~! is invertible with inverse g; and for any F,G

invertible, G o F is invertible with inverse F~! o G~1. Thus,
hl=(gofog ) l=(g ) toflogt=goflogh

QED

17. Let f: A — B and g : B — C be functions. We saw in Theorem 6.2.6 that if f and g are both
invertible, then go f : A — C is invertible. Prove that the converse is false.

That is, give examples of functions f : A — B and g : B — C such that g o f is invertible but at least
one of f or g is not invertible.

(Dis)Proof. Let A=C = {1} and B = {1,2}. Define f: A — B by f(1) =1, and define g : B — C by
g(1) =g(2) =1. Then go f: A — C is given by

go f(1)=g(f(1)) =g(1) =1.

We claim the function h : C' — A given by h(1) = 1 is the inverse of g o f. Certainly the domain and
target of h are correct. Moreover, for every x € A, we have x = 1, and hence

ho(go f)(x)=h(go f(1)) =h(1)=1==z.

Similarly, for every x € C, we have x = 1, and hence

(gof)oh(x)=(gof)(h(1)) =gof(l)=1=u.

Thus, h = (go f)~!, proving the claim. In particular, g o f is invertible.

However, f : A — B is not onto, because 2 € B is not in the range f(A). Thus, f is not invertible. QED
[Note: g isn’t invertible either (because it’s not one-to-one), but no need to say that; we'’re already done.
Also note: there are a lot of other correct counterexamples that could be used to prove the desired
converse is false.]
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18. Define g : R\ {2} = R by g(z) = 7‘%2 Prove that:
Tz —

(a) g is not onto,  (b) g([-2,1]) = [-4,2], (c) g((2,6]) = [6,00)



Proofs. (a): Pick y =4 € R. If there were some x € R \ {2} such that g(z) = 4, then 4z /(x — 2) = 4,
so that 4z = 4a — 8, and hence 0 = —8, a contradiction. Thus, no such x exists, so g is not onto. QED
(b): (€): Given y € LHS, there is some x € [—2, 1] such that y = g(x). Since z > —2, we have 2z > —4
and hence 4z > 2z — 4 = 2(z — 2). Noting that z < 1, we have x — 2 < 0, and therefore 4z /(z —2) < 2;
that is y < 2. Similarly, since x < 1, we have 8x < 8, so that 4o < —4x + 8. Again because z — 2 < 0,
we have y = 4z /(x — 2) > —4 Thus, y € [—4,2]. QED (Q)
(2): Given y € [—4,2], let x = 2y/(y —4). Since y > —4, we have 2y > y — 4. Dividing by y — 4 < 0,
we have x < 1. Meanwhile, since y < 2, we have 4y < 8 and hence 2y < —2y + 8. Again dividing by
y—4 <0, we have x > —2. Thus, z € [—2,1]. Moreover,

dr 4-2y/(y—4) 8y 8y

o) =5 = 2yfly—4) -2 22064 8 7
Hence, y = g(z) =€ g([-2,1]). QED
(©): Given y € LHS, there is some = € (2,6] such that g(x) = y. Since x < 6, we have 2z < 12 and
therefore 4z > 6x — 12. Dividing by z — 2 > 0, we get g(x) > 6, i.e., y € [6,00). QED (©)

(2): Given y € [6,00), let = 2y/(y — 4). Since y > 6, we have 24 < 4y, and hence 2y < 6y — 24.
Dividing by y —4 > 0, we have z < 6. Meanwhile, we have 2y > 2y — 8, and hence, dividing by y —4 > 0,
we have > 2. Thus, = € (2,6]. Moreover,

dr 4-2y/(y—4) 8y 8y

r—2 2yfly-4-2 2y-209y-4 8 7

g(x) =

Hence, y = g(z) =€ ¢([6, 00)). QED

19. Define F: R~ {1} - R by F(z) = 5”0;15.
Xz

Define G : [2,3] — [3,4] by G(z) = F(z?). Prove that:

(a) G is indeed a function.

(b) G is bijective.
Proofs. (a): Given = € [2,3], we have 22 € [4,9]. In particular, 22 # —1; thus, F(x?) is defined. Since
x? <9, we have 522 — 5 < 422 4 4. Dividing by 22 + 1 > 0, we have G(z) < 4. Meanwhile, since z? > 4,
we have 222 > 8, and hence 522 — 5 > 322 + 3. Dividing by 22 + 1 > 0, we have G(z) > 3. Thus, G(x)
is defined and belongs to [3,4]. QED

(b): (one-to-one): Given s,t € [2,3] with G(s) = G(t), we have

552 -5 5t -5

e and so  5s%t? + 5s? — 5t2 — 5 = 5s*t? 4+ 5t2 — 5s% — 5.
s

Thus, 10s? = 102, so that s> = ¢2. Since s,t > 0, we have s = t.
(onto): Giveny € [3,4],1let z = /(5 + y)/(5 — y). Note that z is indeed defined, because 5—y > 5—4 > 0,
and 5+y>5+3> 0.
Since y < 4, we have 10y < 40, and thereore 5 + y < 45 — 9y. Dividing by 5 — y > 0, we have
(5+y)/(5b—y) <9. Taking square roots, we have x < 3. Similarly, since y > 3, we have 5y > 15, and
thereore 5 + y > 20 — 4y. Dividing by 5 —y > 0, we have (5 + y)/(5 — y) > 4. Taking square roots, we
have x > 2. Thus, z € [2,3], and

G() :F<5+y) _50G+y)/G-y) -5 _ 5(+y)—-5(5-y) 10y _y QED

5-y G+y)/6-y)+1  G+y)+(6-y) 10

20. Prove Theorem 6.2.8(a): Let f: A — B be a function, and let C, D C A be subsets. If C C D, then
(prove that) f(C) C f(D).




Proof. Given y € f(C), there exists € C such that f(z) =y. Then z € C C D.
Hence, y = f(z) € f(D). QED

21. Leth:RﬁRbyh(x)zﬁ
T

(a) h™([2,6)) = {1} (b) h((—o00, -1]) = [-2,0)
Proof. (a): (C): Given x € h™1([2,6)), we have h(z) € [2,6), so in particular h(x) > 2. That is,

4
% > 2, so that 4x > 222 + 2, since 22+1>0. Thus, 22 —dr+2< 0, ie. 2(x — 1)2 < 0. But since
T

r € R, we have 2(z — 1)2 > 0, so that 2(z — 1)?> = 0, and hence z = 1 € {1}.

. Prove the following equalities of sets.

4
(2): Given z € {1}, we have x = 1, so that h(z) = T51= 2 € [2,6). Therefore, x € h=1([2,6)). QED
(a)

(b): (©): Given y € h((—o0, —1]), there exists z € (—oo, —1] such that y = h(x). That is, z < —1, and
y:%. Hence, y < 0, since 22 +1 > 0 and 42 < —1 < 0.

x
We also have 222 + 42 + 2 = 2(z + 1)? > 0, and therefore 42 > —222 — 2 = —2(2% + 1) Dividing by
2241 > 0, it follows that y = h(x) > —2. Thus, y € [-2,0).

(D): Given y € [-2,0), note that we have y # 0 and |y| < 2, so that 4 — y? > 0. Thus, we may define

24 /4 —19y?
x:ueR'
Y

We claim that x < —1. To see this, first observe that since y > —2, we have —2 —y < 0 < /4 — 92
2 4 —q2
Thus, 2 + /4 — y? > —y, so that multiplying both sides by 1/y < 0 gives x = crVETY < —1, as
Yy
claimed. That is, x € (—o0, —1].

4444 -2 +4—y? 1= 84+4v4—y?  da
y? y? y
h(x), so that y € h((—o0, —1]). QED

Finally, we have 2% + 1 =

o241

Rearranging, we have

Y

22. Let (an)02 and (b,)52 be real sequences, and suppose that there is some m € N such that a,, = by,
and amy1 = bmy1-

(a) If both sequences are arithmetic, prove that a, = b, for all n € N.
(b) If both sequences are geometric, prove that a,, = b, for all n € N.

Proof. (a): By hypothesis, there are constants ¢, d, s,t € R such that for every n € N, we have a,, = ecn+d
and b, = sn +t. Thus,

c=(c(m+1)+d) — (cm+d) = ams1 — am = b1 — by = (s(m+1) +t) — (sm+1t) = s,
and therefore also
d=(em+d) —cm = ay —cm =by, —sm = (sm+1t) —sm=t.

Hence, for any n € N, we have a, =cn+d = sn+t = b,. QED (a)

(b): By hypothesis, there are constants ¢,r,d, s € R such that for every n € N, we have a,, = ¢r™ and
b, = ds".

If either ¢ = 0 or r = 0, then ds™ = b,, = a,, = 0, so that either d = 0 or s = 0. Conversely, if either
d=0ors=0, then er"™ = a,, = b, =0, so that ¢ = 0 or r = 0. In that case, then a, = 0 = b,, for all
n € N, and we are done.



Thus, we may assume that ¢, d,r, s # 0. We have

- o™ gy by ds™Th <
crm Gm b dsm ’
and therefore also
cr™  ap bm ds™
cC=———=—=—= — = d
Hence, for any n € N, we have a,, = cr" = ds" = by, QED (b)

23. Let (an)o2; be a real sequence. Suppose that for n € N, we have |a,| < 1000.

(a) If (a,)9%, is arithmetic, prove that it is a constant sequence.

(b) Show, by example, that if (a,)32 is geometric, it is not necessarily constant.
Proof. (a): By hypothesis, there are constants b, ¢ € R such that for all n € N, we have a,, = bn + c.
We claim that b = 0. To prove this, suppose not. Then there is an integer m € N such that m >
1+ 2000/|b|. Hence,

2000
lam —a1] =|(bm+¢) — (b+¢)| = |b|(m — 1) > |b] - o = 2000.
However, since ay, a,, € [-1000,1000], we have |a,, — a1| < 2000, contradicting the previous line.

Thus, we must have b = 0, as claimed. Therefore, for all n € N, we have a,, = ¢, i.e., the sequence is
constant. QED (a)

(b): Let a, = (—1)", so that (a,)s2; is geometric with a, = cr™ for ¢ = 1 and r = —1. We have
lan| =1 <1000 for all n € N, but a; = —1 # 1 = ag, so that sequence is not constant.

[Note: There are many other examples. For any choice of r € [—1,1) and any ¢ € R such that |cr| < 1000,
we have |er™| < |er| < 1000 for all n € N.]

24. Let (ayn)22, be a strictly decreasing real sequence. Prove that any subsequence of (ay)22; is also
strictly decreasing.

Proof. Given a subsequence (ay,)°;, we have n; < ng < ng < --- by definition. For each i > 1, we
have a,, > an, , because n; < n;y1 and (a,);2, is strictly decreasing. Thus, the subsequence (an,){2; is
strictly decreasing. QED

25. Let (an)22, be a sequence. For each of the functions f : N — N below, determine whether or not

(bn)pZ; is a subsequence of (an )52, where b, = as).
(a) f(n) =5"+nl! (b) f(n) =n?—4n+38 (c) f(n)=n%—2n+7
Proof. (a): ‘YES, subsequence‘ as follows.
Given n € N, we have (n +1)! = (n+ 1) - n! > n! and 5"*! > 57 Thus, f(n+ 1) > f(n). QED (a)

(b): ‘NO, not subsequence‘ as follows.
We have f(1) =5 >4 = f(2), so f is not strictly increasing, so (b,) is not a subsequence. QED (b)

(a): ‘YES, subsequence‘ as follows.
Given n € N, we have

fn+1)—f(n) = (n+1)2=2(n+1)+7—(n*—2n+7) = n’+2n+1-2n—24+7-n*4+2n—7=2n—1 > 0.

Thus, f(n+1) > f(n). QED (c)



26. Let (ap), (by), and (c,) be sequences of real numbers. Suppose that (a,) is a subsequence of (b,,),
and that (by,) is a subsequence of (¢,). Prove that (a,) is a subsequence of (c;,).

Proof. Because (by,) is a subsequence of (c,), there is a strictly increasing sequence (n;)72; of positive
integers such that b; = c,,, for each j € N.
Similarly, because (a,,) is a subsequence of (b,,), there is a strictly increasing sequence (m;);2; of positive
integers such that a; = b,,, for each 7 € N.
For each integer i € N, define N; = n,,, € N. Then for each i € N, we have m;y; > m,; (since (m;) is
strictly increasing), and hence

Niy1 = omip1y > N, = Ny,

since (nj) is strictly increasing. Thus, (N;)i2; is a strictly increasing sequence of positive integers. By
definition, then, (cy,))s=; is a subsequence of (¢, ). In addition, for each i € N, we have

a; = bm, = Cnmi = CN;,

so that (a;) is indeed a subsequence of (c,). QED

27. Let (ayn), (by), and (cy,) be sequences of real numbers. Suppose that there are integers M, N > 1 such
that

e for all n > M, we have a,, < b,, and

e for all n > N, we have b, < ¢,.
Prove that there is an integer K > 1 such that for all n > K, we have a,, < ¢,.

Proof. Let K = max{M, N} € N. Given an integer n > K, we have n > M and n > N.
Therefore a,, < b, < c,. QED

28. Let (ay),—; be a sequence of real numbers, and let (b,,)n—; be a strictly increasing geometric sequence
of positive integers, so that (ap, )re; is a subsequence of (a,)pe;.
If (an);=; is a strictly increasing geometric sequence, prove that the subsequence (ap, )n—; is definitely

not geometric.

Proof. Since the two sequences are both geometric, there are real numbers r, s € R such that for every
n > 2, we have a,, = ;™! and b, = bys" L.
Since az > aj, we have ai(r — 1) > 0. In particular, a; # 0 and r # 1. Since az > ag, we also have
a1(r? —r) > 0. Dividing by a1(r — 1) > 0, it follows that r > 0.
By similar reasoning applied to the strictly increasing sequence (by,), we also have by # 0 and s # 1.
Suppose (towards a contradiction) that the subsequence (ap, ) were geometric. Then the ratio of the first
two terms ap, = a1~ and ap, = ;7?27 would equal the ratio of the third term ay, = a;7**~! and the
second term. (None of these terms is 0, since aj,r # 0.) That is,

pha—bi _ alrzri _ aﬂ’l:’*i _ pbabo

air’i— air’2—

Since r > 0 with r # 1, it follows that by — by = bg — by, and hence by (s — 1) = by (s?> — s). Dividing both
sides by bi(s — 1) # 0, we have 1 = s, a contradiction. QED

29. Give an example of a real, non-constant, geometric sequence (a,)n—;, and a strictly increasing
geometric sequence of positive integers (by,).2; such that the subsequence (ap, );e; is also geometric.

Solution/Proof. Let a, = (—1)" for all n € N, and let b, = 2" for all n. Then both (a,) and (by)
are real, geometric sequences (since —1 and 2 are real constants). Moreover, b, is in fact a sequence of
positive integers, since 2" € N for all n € N.



We also have a1 = —1 # 1 = ag, so (ay) is non-constant. And for every n € N, we have
b1 =27 =2. 9" > on — .

so that (b,) is strictly increasing. Finally, for all n € N, we have

so that (ap,) = (1™) is a (constant) geometric sequence. QED

Note: More generally, we could have picked a,, = a(—1)" (where a € R~ {0} is a nonzero constant), and
b, = k™ (where k > 2 is a constant integer). But those are the only examples. In particular, the only
way to get this to work is to have the ratio r for (a,) to be r = —1, so that (a,) is nonconstant but (as, )
is constant and hence geometric.



