
Math 220, Section 03, Fall 2025 Professor Rob Benedetto

Solutions to Practice Problems 2

1. Prove or disprove the following statement: for all integers m,n ∈ Z, if m|n2, then m|n.
(Dis)Proof. This is false. Let m = 4 and n = 2. Then m = 4|4 = n2, but m = 4 ∤ 2 = n. QED

2. Suppose that a, b, c ∈ Z are nonzero integers such that 143a+ 217b = c. Prove that gcd(a, b)|c.
Proof. Write d = gcd(a, b). Since d|a and d|b, there are integers k,m ∈ Z such that a = kd and b = md.
Thus,

c = 143a+ 217b = 143kd+ 217md = (143k + 217m)d.

Since 143k + 217m ∈ Z, we have d|c. QED

3. Prove that 4|(13n − 1) for every n ∈ N.
Proof, by induction on n.
Base Case: For n = 1, we have 13n − 1 = 12 = 4 · 3, which is divisible by 4.
Inductive Step: Given that it’s true for n = k ≥ 1, we may write 13k − 1 = 4m for some m ∈ Z, and
hence

13k+1 − 1 = 13(13k − 1) + 13− 1 = 13(4m) + 12 = 4(13m+ 3).

Since 13m+ 3 ∈ Z, we have 4|(13k+1 − 1). QED

4. Prove that 7|(10n − 3n) for every n ∈ N.
Proof, by induction on n.
Base Case: For n = 1, we have 10n − 3n = 10− 3 = 7 = 7 · 1, which is divisible by 7.
Inductive Step: Given that it’s true for n = k ≥ 1, we may write 10k − 3k = 7m for some m ∈ Z, and
hence

10k+1 − 3k+1 = 10(10k − 3k) + 10 · 3k − 3k+1 = 10(7m) + (10− 3) · 3k = 7(10m+ 3k).

Since 10m+ 3k ∈ Z, we have 7|(10k+1 − 3k+1). QED

5. Let n ∈ N be a positive integer, and write its prime factorization as n = pr11 pr22 · · · prkk , where
p1, p2, . . . , pk are distinct primes, and r1, r2, . . . , rk ∈ N. Prove that n is a perfect cube if and only if
each of the integers r1, r2, . . . , rk is divisible by 3.

Proof. (⇒): Given that n is a perfect cube, there exists m ∈ N such that m3 = n. Write the prime
factorization of m as m = qs11 · · · qsℓℓ , where q1, . . . , qℓ are distinct primes, and each si ∈ N. Then

pr11 pr22 · · · prkk = n = m3 = q3s11 · · · q3sℓℓ .

Thus, possibly after re-ordering, the qi’s are precisely the pi’s, and ri = 3si for each i. Thus, each ri is
divisible by 3.

(⇐): Given that each ri is divisible by 3, there are integers s1, . . . , sk ∈ N such that ri = 3si for each i.
Define

m = ps11 ps22 · · · pskk ∈ N.

Then
m3 = p3s11 p3s22 · · · p3skk = pr11 pr22 · · · prkk = n,

so that n = m3 is a perfect cube. QED



6. Let a, b, c ∈ N be positive integers. Suppose that c = a2, but also c = b3. Prove that there is some
n ∈ N such that c = n6.

Proof. Write the prime factorization of c as c = pr11 · · · prkk , where p1, . . . , pk are distinct primes, and
each ri ∈ N. By the previous problem, the fact that c is a perfect cube means that 3|ri for each i. A
similar argument shows, because c is a perfect square, that 2|ri for each i. Thus, for each i, the prime
factorization of ri has (at least) a 2 and a 3 in it, meaning that ri = 6si for some si ∈ N. Define

n = ps11 ps22 · · · pskk ∈ N.

Then n6 = p6s11 p6s22 · · · p6skk = pr11 pr22 · · · prkk = c. QED

7. Let p, q ∈ N be prime numbers. Suppose that p|q. Prove that p = q.

Proof. Since q is prime, the only elements of N dividing q are 1 and q. Thus, since p ∈ N divides q, we
have either p = 1 or p = q. However, p ≥ 2 since p is prime. Thus, p = q. QED

8. Let m,n ∈ Z be positive integers. Suppose that 20|(m− 7) and 20|(n− 11). Prove that 20|(mn− 17).

Proof. There exist a, b ∈ Z such that m − 7 = 20a and n − 11 = 20b. That is, m = 7 + 20a and
n = 11 + 20b. Thus,

mn− 17 = (7 + 20a)(11 + 20b)− 17 = 60 + 20(11a) + 20(7b) + 20(20ab) = 20(3 + 11a+ 7b+ 20ab).

Since 3 + 11a+ 7b+ 20ab ∈ Z, we have 20|(mn− 17). QED

9. Let a, b, c ∈ Z, and suppose that a|(15b+ 31c) and that a|15. Prove that a|c.
Proof. By hypothesis, there exist integers m,n ∈ Z such that 15b + 31c = ma and 15 = na. The first
equation gives us 31c = ma− 15b, and hence c = ma− 15b− 15(2c). Thus,

c = ma− 15b− 15(2c) = ma− nab− 2nac = a(m− nb− 2nc).

Since m− nb− 2nc ∈ Z, it follows that a|c. QED

10. Let a, b,m, n ∈ N, and suppose that am = bn and that gcd(a, b) = 1. Prove that there is some k ∈ N
such that n = ka and m = kb.

Proof (Method 1). Write a = pr11 · · · prtt , where p1, . . . , pt are distinct primes, and each ri ∈ N. Similarly
write b = qs11 · · · qsℓℓ , where q1, . . . , qℓ are distinct primes, and each si ∈ N.
Note that for each i, j, we have pi ̸= qj , as otherwise pi would be a common divisor of a and b, so that
gcd(a, b) ≥ pi > 1, a contradiction. Thus, the primes p1, . . . , pt, q1, . . . , qℓ are all distinct.
Let N = am = bn. For each i = 1, . . . , t, we have prii |a, and hence prii |N . Similarly, for each j = 1, . . . , ℓ,
we have q

sj
j |b, and hence q

sj
j |N . Thus, the prime factorization of N includes each pi to at least the power

ri, and each qj to at least the power sj . Since these primes are all distinct, it follows that N is divisible
by pr11 · · · prtt q

s1
1 · · · qsℓℓ = ab.

That is, there is an integer k ∈ N such that N = kab. Thus, am = N = kab, and hence, dividing by a,
we have m = kb. Similarly, we have bn = N = kab, and hence n = kb. QED

Proof (Method 2). Since am = bn, we have a|(bn). But then, because gcd(a, b) = 1, it follows that
a|n, by a theorem (e.g. from the book). That is, there exists k ∈ Z such that n = ka. Since a, n > 0, we
must have k > 0, so k ∈ N.
Thus, we have am = bka, and cancelling a from both sides, we have m = bk. So n = ka and m = kb,
QED



Note: here’s a quick proof of the theorem quoted in Method 2 above. Since gcd(a, b) = 1, there exist
integers x, y ∈ Z such that xa+ yb = 1. Multiplying by n, we have xan+ ybn = n.
But bn = am, so xan+ yam = n. That is, a(xn+ ym) = n. Define k = xn+ ym ∈ Z; then ak = n, i.e.,
a|n.

11. Determine whether each of the following supposed functions is actually a function.

(a) f : (0,∞) → (0,∞) by f(x) =
x− 1

⌈x⌉
[ ⌈x⌉ denotes the ceiling function of x]

(b) g : P(N) → P(N) by g(A) = {n+ 3 |n ∈ A}.
(c) h : P(N) → N by h(A) = minA. [minA denotes the smallest element of A.]

(d) k : P(N)∖ {∅} → N by k(A) = maxA. [maxA denotes the largest element of A.]

(e) F : N → P(N) by F (n) = {m ∈ N |m is a divisor of n}.
Answers/Proofs. (a): Not a function. ⌈1/2⌉ = 1, so

f
(1
2

)
=

−1/2

1
= −1

2
̸∈ (0,∞),

so f does not actually map (0,∞) into (0,∞).
[Note: if we had written f : (0,∞) → (−1,∞), that would have been a funciton.]

(b): Function. Given A ∈ P(N), we have A ⊆ N. So for all n ∈ A, we have n + 3 ∈ N. Thus, g(A) is
indeed a defined and well-defined subset of N, and hence g(A) ∈ P(N).
(c): Not a function. ∅ ∈ P(N), but ∅ has no elements at all, and hence no smallest element. Thus, h(∅)
isn’t defined.

(d): Not a function. N ∈ P(N)∖ {∅}, but N has no largest element, so k(N) isn’t defined.
(e): Function. For each n ∈ N, and for each m ∈ N, the statement “m is a divisor of n” is indeed a
statement (i.e., either true or false but not both), and hence F (n) is indeed a set, and in fact a subset of
N. That is, F (n) is a defined and well-defined element of P(N).

12. For each of the following functions, decide whether or not it is injective, and also whether or not it
is surjective. If it is both, find a formula for its inverse function. Don’t forget to prove everything you
claim.

(a) f : R∖ {1} → R by f(x) =
x

x− 1
.

(b) g : R∖ {±1} → R by g(x) = f(x2).

(c) h : A → R by h = g|A, where A = [0, 1) ∪ (1,∞)

(d) k : R → R by k(x) = x+ ⌊x⌋.

(e) F : R∖ {±1} → R by F (x) =
x

x2 − 1
Answers/Proofs. (a) One-to-one: Given x, y ∈ R ∖ {1} with f(x) = f(y), we have x/(x − 1) =
y/(y − 1), and so cross-multiplying, we have xy − x = xy − y. Adding x + y − xy to both sides gives
x = y. QED
Not onto: We claim that 1 ∈ R is not in the range of f . Indeed, given x ∈ R ∖ {1}, if f(x) = 1, then
x/(x − 1) = 1. Multiplying by x − 1 gives x = x − 1, and subtracting x gives 0 = −1, a contradiction.
QED

(b) Not one-to-one: −2 ̸= 2 are both in the domain, and g(−2) = f(4) = g(2). QED
Not onto: Again, 1 is not in the range of g; if x is a point in the domain such that g(x) = 1, then
x2/(x2 − 1) = 1, giving x2 = x2 − 1 and hence 0 = −1, a contradiction. QED



(c) One-to-One: Given x, y ∈ A with h(x) = h(y), we have g(x) = g(y), and hence f(x2) = f(y2). That
is, x2/(x2 − 1) = y2/(y2 − 1). Cross-multiplying gives x2y2 − x2 = x2y2 − y2, and so subtracting x2y2

gives x2 = y2. Since x, y ≥ 0, we have x = y. QED
Not onto: Yet again, and for the same reason, 1 is not in the range of h. (If h(x) = 1 for some x ∈ A,
then x is also in the domain of g, and so g(x) = 1, which contradicts the above.) QED

(d) Note: it will help to write x = (x−⌊x⌋)+⌊x⌋, with the observation that x−⌊x⌋ ∈ [0, 1), and ⌊x⌋ ∈ Z.
One-to-One: Given x, y ∈ R such that k(x) = k(y), we have

(x− ⌊x⌋) + 2⌊x⌋ = (y − ⌊y⌋) + 2⌊y⌋, so 2(⌊x⌋ − ⌊y⌋) = (y − ⌊y⌋)− (x− ⌊x⌋).

In the second equation, the left side is an even integer, while the right side is the difference of two elements
of [0, 1) and hence lies in (−1, 1). The only even integer in that interval is 0, so both sides are 0.
Thus, ⌊x⌋ = ⌊y⌋, and (x− ⌊x⌋) = (y − ⌊y⌋). Adding, we get x = y. QED
Not onto: We claim that 1 is not in the range of k. Given x ∈ R, let t = x − ⌊x⌋ ∈ [0, 1), and let
n = 2⌊x⌋, which is an even integer. Then k(x) = n + t. If n ≥ 2, then k(x) ≥ 2 is not 1; and if n ≤ 0,
then k(x) < 1 is not 1. QED

(e) Not one-to-one: The points −1/2 and 2 are both in the domain and are different, but

F (−1/2) =
−1/2

(1/4)− 1
=

−1/2

−3/4
=

2

3
=

2

22 − 1
= F (2).

QED
[Note: there are a lot of ways to do this, none of them obvious, but a lot of them easy to find. I did this
by arbitrarily picking x = 2 in the domain, and then solving the equation F (t) = F (2) to find the other
root.]
Onto: Given y ∈ R, consider two cases. First, if y = 0, then 0 is in the domain, and F (0) = 0 = y.
Otherwise, if y ̸= 0, then let x = (1 +

√
1 + 4y2)/(2y), which is a real number because the denominator

2y is nonzero, and 1 + 4y2 > 0 has a real square root. In addition, the numerator is

1 +
√

1 + 4y2 > 1 +
√
4y2 = 1 + |2y| > |2y|.

In particular, the numerator is not ±2y, and hence x is not ±1. That is, x is in the domain of F . Finally,
since

x2 − 1 =
1 + 2

√
1 + 4y2 + 1 + 4y2

4y2
− 1 =

2 + 2
√
1 + 4y2

4y2
=

x

y
,

we have
F (x) =

x

x2 − 1
=

x

x/y
= y.

QED
[I hope it’s clear that I thought of that choice of x by just applying the quadratric formula to the equation
F (x) = y.]

13. (a) Find the range R of the function h in #12(c). If we now view the target set of h as being R, find
a formula for the inverse of h.

(b) Do the same for the function k in #12(d).

Answers/Proofs. (a): We claim the image of h is R = (−∞, 0] ∪ (1,∞). To prove h(A) = R:
(⊆): Given y ∈ h(A), write y = h(x) for some x ∈ A. If x ∈ [0, 1), then x2 − 1 < 0 and x2 ≥ 0, so
y = x2/(x2 − 1) ≤ 0. That is, y ∈ (−∞, 0] ⊆ R. Otherwise, we have x ∈ (1,∞), so that x2 > x2 − 1 > 0;
thus, y = x2/(x2 − 1) > 1, so y ∈ (1,∞) ⊆ R.



(⊇): Given y ∈ R, we claim that y/(y − 1) ≥ 0. After all, y ̸= 1, so y/(y − 1) is a real number. If y ≤ 0,
then y−1 < 0 also, and hence y/(y−1) ≥ 0. Otherwise, since y ∈ R, we have y > 1, and hence y−1 > 0,
so that y/(y − 1) > 0, proving our claim.
Thus, we can define x =

√
y/(y − 1) ≥ 0. Note that y ̸= y − 1, and hence x ̸= 1; so x ∈ A. And

h(x) = f(x2) = f
( y

y − 1

)
=

y/(y − 1)

[y/(y − 1)]− 1
=

y

y − (y − 1)
= y.

QED
Finally, the formula for the inverse is h−1(y) =

√
y/(y − 1). The proof of (⊇) above showed that

h ◦ h−1 = idR. Meanwhile, given x ∈ A, we have

h−1 ◦ h(x) = h−1
( x2

x2 − 1

)
=

√
x2/(x2 − 1)

[x2/(x2 − 1)]− 1
=

√
x2

x2 − (x2 − 1)
=

√
x2 = |x| = x,

where the last equality is because x ∈ A, and hence x ≥ 0. QED
[FYI: I thought of the set R by looking at where some test points went under h and guessing that intervals
mapped to intervals.]

(b): We claim the image of k is R =
⋃
n∈Z

[2n, 2n+ 1). To prove k(R) = R:

(⊆): Given y ∈ k(R), write y = k(x) for some x ∈ R. Let m = ⌊x⌋ ∈ Z and t = x−m ∈ [0, 1). Then

y = k(x) = x+m = t+ 2m ∈ [2m, 2m+ 1) ∈
⋃
n∈Z

[2n, 2n+ 1).

(⊇): Given y ∈ R, there is some n ∈ Z such that y ∈ [2n, 2n + 1). Letting t = y − 2n, then, we have
t ∈ [0, 1). Define x = n+ t ∈ R. Then ⌊x⌋ = n, and therefore

k(x) = x+ n = 2n+ t = y.

QED
Finally, [motivated by the proof of (⊇) above, with a little simplification I did in my scratchwork], we
claim the formula for the inverse of k is

k−1 : R → R by k−1(y) = y − 1

2
⌊y⌋.

Given y ∈ R, there is some n ∈ Z such that y ∈ [2n, 2n + 1), so that n = ⌊y⌋, and y − 2n ∈ [0, 1). In
particular,

⌊y − n⌋ = ⌊n+ (y − 2n)⌋ = n.

Thus,

k ◦ k−1(y) = k
(
y − 1

2
⌊y⌋

)
= k(y − n) = y − n+ ⌊y − n⌋ = y − n+ n = y,

proving that k ◦ k−1 = idR.
Meanwhile, given x ∈ R, write x = n+ t with n ∈ Z and t ∈ [0, 1). Then

k−1(2n+ t) = 2n+ t− 1

2
⌊2n+ t⌋ = 2n+ t− 1

2
(2n) = 2n+ t− n = n+ t = x,

and therefore
k−1 ◦ k(x) = k−1

(
x+ ⌊x⌋

)
= k−1(x+ n) = k−1(2n+ t) = x,

proving that k−1 ◦ k = idR. QED



14. Define f : (−3, 1] → (5, 23] by f(x) =
3x2 + 23

x2 + 1
.

(a) Prove that f is indeed a function from (−3, 1] to (5, 23]
(b) Prove that f is onto.
(c) Prove that the inverse image f−1((5, 13]) is (−3,−1] ∪ {1}.

Proofs. (a): Given x ∈ (−3, 1], we have f(x) ∈ R since the denominator x2 + 1 is nonzero.
In addition, we have 20x2 ≥ 0, so that 3x2+23 ≤ 23x2+23, and hence (dividing by x2+1 > 0), we have
f(x) ≤ 23.
Finally, we also have |x| < 3, and therefore x2 < 9, so that 2x2 < 18 and hence 3x2+23 > 5x2+5. Again
dividing by x2 + 1 > 0, it follows that f(x) > 5.
Thus, we have shown f(x) ∈ (5, 23]. QED (a)

(b): Given y ∈ (5, 23], define t =
23− y

y − 3
, which is in R since y ̸= 3 and hence the denominator is nonzero.

Also observe that 23− y ≥ 0 and that y − 3 > 2 > 0, so that t ≥ 0.
Furthermore, since y > 5, we have 10y > 50, and hence 9y−27 > 23−y. Dividing by y−3 > 0, it follows
that 9 > t. Thus, t ∈ [0, 9).
Define x = −

√
t ∈ (−3, 0] ⊆ (−3, 1]. Then

f(x) =
3x2 + 23

x2 + 1
=

3t+ 23

t+ 1
=

3(23− y)

y − 3
+ 23

23− y

y − 3
+ 1

=
3(23− y) + 23(y − 3)

23− y + (y − 3)
=

20y

20
= y

QED (b)
(c): (⊆): Given x ∈ LHS, we have f(x) ∈ (5, 13], so in particular, f(x) ≤ 13.

That is,
3x2 + 23

x2 + 1
≤ 13, and hence (multiplying by x2 + 1 > 0) we have 3x2 + 23 ≤ 13x2 + 13. It follows

that 10 ≤ 10x2, and hence x2 ≥ 1. That is, |x| ≥ 1.
If x > 0, then we have x ≥ 1 but also of course x lies in (−3, 1], the domain of f . Thus, x = 1 ∈
(−3,−1] ∪ {1}.
Otherwise, we have x ≤ 0, so that x ≤ −1, and hence x ∈ (−3,−1] ⊆ (−3,−1] ∪ {1}. QED (⊆)
(⊇): Given x ∈ RHS, we have |x| ≥ 1 and hence x2 ≥ 1. Therefore, 10 ≤ 10x2, and hence 3x2 + 23 ≤
13x2 + 13. Dividing by x2 + 1 > 0, it follows that f(x) ≤ 13. In addition, we saw in part (a) that
f(x) > 5, and hence f(x) ∈ (5, 13]. That is, x ∈ f−1((5, 13]). QED (⊇) QED (c)

15. Let f : A → B and g : B → C be functions, and let S ⊆ A and T ⊆ C be subsets. Prove that

(g ◦ f)(S) = g
(
f(S)

)
and (g ◦ f)−1(T ) = f−1

(
g−1(T )

)
.

Proof, First Equality. (⊆) Given c ∈ (g ◦ f)(S), there is some a ∈ S such that g ◦ f(a) = c. Thus,
f(a) ∈ f(S), and hence

c = g ◦ f(a) = g
(
f(a)

)
∈ g

(
f(S)

)
.

(⊇) Given c ∈ g(f(S)), there is some b ∈ f(S) such that g(b) = c. Hence, there is some a ∈ S such that
f(a) = b. Thus,

c = g(b) = g
(
f(a)

)
= g ◦ f(a) ∈ (g ◦ f)(S).

Proof, Second Equality. (⊆) Given a ∈ (g ◦ f)−1(T ), we have g ◦ f(a) ∈ T by definition. Let
b = f(a) ∈ B. Then

g(b) = g
(
f(a)

)
∈ T,



and hence b ∈ g−1(T ). Since f(a) = b, it follows that a ∈ f−1(g−1(T )).
(⊇) Given a ∈ f−1(g−1(T )), let b = f(a), so that b ∈ g−1(T ) by definition. Thus,

g ◦ f(a) = g
(
f(a)

)
= g(b) ∈ T,

and hence a ∈ (g ◦ f)−1(T ). QED

16. Let f : A → A and g : A → B be functions. Assume that g is invertible, and let h = g◦f◦g−1 : B → B.

(a) Prove that h ◦ h = g ◦ f ◦ f ◦ g−1.

(b) If f is invertible, prove that h is invertible, and that h−1 = g ◦ f−1 ◦ g−1.

Proof. (a) Both h ◦ h and g ◦ f ◦ f ◦ g−1 are clearly functions from B to B. Moreover, for any b ∈ B, we
have

h ◦ h(b) = (g ◦ f ◦ g−1) ◦ (g ◦ f ◦ g−1)(b) = g ◦ f ◦ (g−1 ◦ g) ◦ f ◦ g−1(b)

= g ◦ f ◦ idA ◦f ◦ g−1(b) = g ◦ f ◦ f ◦ g−1(b),

where the second equality was by the associativity of ◦. QED
(b) By Theorems from class (and from the book), g−1 is invertible with inverse g; and for any F,G
invertible, G ◦ F is invertible with inverse F−1 ◦G−1. Thus,

h−1 = (g ◦ f ◦ g−1)−1 = (g−1)−1 ◦ f−1 ◦ g−1 = g ◦ f−1 ◦ g−1.

QED

17. Let f : A → B and g : B → C be functions. We saw in Theorem 6.2.6 that if f and g are both
invertible, then g ◦ f : A → C is invertible. Prove that the converse is false.
That is, give examples of functions f : A → B and g : B → C such that g ◦ f is invertible but at least
one of f or g is not invertible.

(Dis)Proof. Let A = C = {1} and B = {1, 2}. Define f : A → B by f(1) = 1, and define g : B → C by
g(1) = g(2) = 1. Then g ◦ f : A → C is given by

g ◦ f(1) = g
(
f(1)

)
= g(1) = 1.

We claim the function h : C → A given by h(1) = 1 is the inverse of g ◦ f . Certainly the domain and
target of h are correct. Moreover, for every x ∈ A, we have x = 1, and hence

h ◦ (g ◦ f)(x) = h
(
g ◦ f(1)

)
= h(1) = 1 = x.

Similarly, for every x ∈ C, we have x = 1, and hence

(g ◦ f) ◦ h(x) = (g ◦ f)
(
h(1)

)
= g ◦ f(1) = 1 = x.

Thus, h = (g ◦ f)−1, proving the claim. In particular, g ◦ f is invertible.
However, f : A → B is not onto, because 2 ∈ B is not in the range f(A). Thus, f is not invertible. QED
[Note: g isn’t invertible either (because it’s not one-to-one), but no need to say that; we’re already done.
Also note: there are a lot of other correct counterexamples that could be used to prove the desired
converse is false.]

18. Define g : R∖ {2} → R by g(x) =
4x

x− 2
. Prove that:

(a) g is not onto, (b) g
(
[−2, 1]

)
= [−4, 2], (c) g

(
(2, 6]

)
= [6,∞)



Proofs. (a): Pick y = 4 ∈ R. If there were some x ∈ R ∖ {2} such that g(x) = 4, then 4x/(x− 2) = 4,
so that 4x = 4x− 8, and hence 0 = −8, a contradiction. Thus, no such x exists, so g is not onto. QED

(b): (⊆): Given y ∈ LHS, there is some x ∈ [−2, 1] such that y = g(x). Since x ≥ −2, we have 2x ≥ −4
and hence 4x ≥ 2x− 4 = 2(x− 2). Noting that x ≤ 1, we have x− 2 < 0, and therefore 4x/(x− 2) ≤ 2;
that is y ≤ 2. Similarly, since x ≤ 1, we have 8x ≤ 8, so that 4x ≤ −4x + 8. Again because x − 2 < 0,
we have y = 4x/(x− 2) ≥ −4 Thus, y ∈ [−4, 2]. QED (⊆)

(⊇): Given y ∈ [−4, 2], let x = 2y/(y − 4). Since y ≥ −4, we have 2y ≥ y − 4. Dividing by y − 4 < 0,
we have x ≤ 1. Meanwhile, since y ≤ 2, we have 4y ≤ 8 and hence 2y ≤ −2y + 8. Again dividing by
y − 4 < 0, we have x ≥ −2. Thus, x ∈ [−2, 1]. Moreover,

g(x) =
4x

x− 2
=

4 · 2y/(y − 4)

2y/(y − 4)− 2
=

8y

2y − 2(y − 4)
=

8y

8
= y.

Hence, y = g(x) =∈ g([−2, 1]). QED

(⊆): Given y ∈ LHS, there is some x ∈ (2, 6] such that g(x) = y. Since x ≤ 6, we have 2x ≤ 12 and
therefore 4x ≥ 6x− 12. Dividing by x− 2 > 0, we get g(x) ≥ 6, i.e., y ∈ [6,∞). QED (⊆)

(⊇): Given y ∈ [6,∞), let x = 2y/(y − 4). Since y ≥ 6, we have 24 ≤ 4y, and hence 2y ≤ 6y − 24.
Dividing by y−4 > 0, we have x ≤ 6. Meanwhile, we have 2y > 2y−8, and hence, dividing by y−4 > 0,
we have x > 2. Thus, x ∈ (2, 6]. Moreover,

g(x) =
4x

x− 2
=

4 · 2y/(y − 4)

2y/(y − 4)− 2
=

8y

2y − 2(y − 4)
=

8y

8
= y.

Hence, y = g(x) =∈ g([6,∞)). QED

19. Define F : R∖ {−1} → R by F (x) =
5x− 5

x+ 1
.

Define G : [2, 3] → [3, 4] by G(x) = F (x2). Prove that:

(a) G is indeed a function.

(b) G is bijective.

Proofs. (a): Given x ∈ [2, 3], we have x2 ∈ [4, 9]. In particular, x2 ̸= −1; thus, F (x2) is defined. Since
x2 ≤ 9, we have 5x2 − 5 ≤ 4x2 + 4. Dividing by x2 + 1 > 0, we have G(x) ≤ 4. Meanwhile, since x2 ≥ 4,
we have 2x2 ≥ 8, and hence 5x2 − 5 ≥ 3x2 + 3. Dividing by x2 + 1 > 0, we have G(x) ≥ 3. Thus, G(x)
is defined and belongs to [3, 4]. QED

(b): (one-to-one): Given s, t ∈ [2, 3] with G(s) = G(t), we have

5s2 − 5

s2 + 1
=

5t2 − 5

t2 + 1
, and so 5s2t2 + 5s2 − 5t2 − 5 = 5s2t2 + 5t2 − 5s2 − 5.

Thus, 10s2 = 10t2, so that s2 = t2. Since s, t > 0, we have s = t.
(onto): Given y ∈ [3, 4], let x =

√
(5 + y)/(5− y). Note that x is indeed defined, because 5−y ≥ 5−4 > 0,

and 5 + y ≥ 5 + 3 > 0.
Since y ≤ 4, we have 10y ≤ 40, and thereore 5 + y ≤ 45 − 9y. Dividing by 5 − y > 0, we have
(5 + y)/(5 − y) ≤ 9. Taking square roots, we have x ≤ 3. Similarly, since y ≥ 3, we have 5y ≥ 15, and
thereore 5 + y ≥ 20 − 4y. Dividing by 5 − y > 0, we have (5 + y)/(5 − y) ≥ 4. Taking square roots, we
have x ≥ 2. Thus, x ∈ [2, 3], and

G(x) = F
(5 + y

5− y

)
=

5(5 + y)/(5− y)− 5

(5 + y)/(5− y) + 1
=

5(5 + y)− 5(5− y)

(5 + y) + (5− y)
=

10y

10
= y QED

20. Prove Theorem 6.2.8(a): Let f : A → B be a function, and let C,D ⊆ A be subsets. If C ⊆ D, then
(prove that) f(C) ⊆ f(D).



Proof. Given y ∈ f(C), there exists x ∈ C such that f(x) = y. Then x ∈ C ⊆ D.
Hence, y = f(x) ∈ f(D). QED

21. Let h : R → R by h(x) =
4x

x2 + 1
. Prove the following equalities of sets.

(a) h−1
(
[2, 6)

)
= {1} (b) h

(
(−∞,−1]

)
= [−2, 0)

Proof. (a): (⊆): Given x ∈ h−1([2, 6)), we have h(x) ∈ [2, 6), so in particular h(x) ≥ 2. That is,
4x

x2 + 1
≥ 2, so that 4x ≥ 2x2 + 2, since x2 + 1 > 0. Thus, 2x2 − 4x+ 2 ≤ 0, i.e. 2(x− 1)2 ≤ 0. But since

x ∈ R, we have 2(x− 1)2 ≥ 0, so that 2(x− 1)2 = 0, and hence x = 1 ∈ {1}.

(⊇): Given x ∈ {1}, we have x = 1, so that h(x) =
4

1 + 1
= 2 ∈ [2, 6). Therefore, x ∈ h−1([2, 6)). QED

(a)

(b): (⊆): Given y ∈ h((−∞,−1]), there exists x ∈ (−∞,−1] such that y = h(x). That is, x ≤ −1, and

y =
4x

x2 + 1
. Hence, y < 0, since x2 + 1 > 0 and 4x ≤ −1 < 0.

We also have 2x2 + 4x + 2 = 2(x + 1)2 ≥ 0, and therefore 4x ≥ −2x2 − 2 = −2(x2 + 1) Dividing by
x2 + 1 > 0, it follows that y = h(x) ≥ −2. Thus, y ∈ [−2, 0).

(⊇): Given y ∈ [−2, 0), note that we have y ̸= 0 and |y| ≤ 2, so that 4 − y2 ≥ 0. Thus, we may define

x =
2 +

√
4− y2

y
∈ R.

We claim that x ≤ −1. To see this, first observe that since y ≥ −2, we have −2 − y ≤ 0 ≤
√

4− y2.

Thus, 2 +
√
4− y2 ≥ −y, so that multiplying both sides by 1/y < 0 gives x =

2 +
√

4− y2

y
≤ −1, as

claimed. That is, x ∈ (−∞,−1].

Finally, we have x2 + 1 =
4 + 4

√
4− y2 + 4− y2

y2
+ 1 =

8 + 4
√

4− y2

y2
=

4x

y
. Rearranging, we have

y =
4x

x2 + 1
= h(x), so that y ∈ h((−∞,−1]). QED

22. Let (an)
∞
n=1 and (bn)

∞
n=1 be real sequences, and suppose that there is some m ∈ N such that am = bm

and am+1 = bm+1.

(a) If both sequences are arithmetic, prove that an = bn for all n ∈ N.
(b) If both sequences are geometric, prove that an = bn for all n ∈ N.

Proof. (a): By hypothesis, there are constants c, d, s, t ∈ R such that for every n ∈ N, we have an = cn+d
and bn = sn+ t. Thus,

c =
(
c(m+ 1) + d

)
− (cm+ d) = am+1 − am = bm+1 − bm =

(
s(m+ 1) + t

)
− (sm+ t) = s,

and therefore also

d = (cm+ d)− cm = am − cm = bm − sm = (sm+ t)− sm = t.

Hence, for any n ∈ N, we have an = cn+ d = sn+ t = bn. QED (a)

(b): By hypothesis, there are constants c, r, d, s ∈ R such that for every n ∈ N, we have an = crn and
bn = dsn.
If either c = 0 or r = 0, then dsm = bm = am = 0, so that either d = 0 or s = 0. Conversely, if either
d = 0 or s = 0, then crm = am = bm = 0, so that c = 0 or r = 0. In that case, then an = 0 = bn for all
n ∈ N, and we are done.



Thus, we may assume that c, d, r, s ̸= 0. We have

r =
crm+1

crm
=

am+1

am
=

bm+1

bm
=

dsm+1

dsm
= s,

and therefore also

c =
crm

rm
=

am
rm

=
bm
sm

=
dsm

sm
= d.

Hence, for any n ∈ N, we have an = crn = dsn = bn. QED (b)

23. Let (an)
∞
n=1 be a real sequence. Suppose that for n ∈ N, we have |an| ≤ 1000.

(a) If (an)
∞
n=1 is arithmetic, prove that it is a constant sequence.

(b) Show, by example, that if (an)
∞
n=1 is geometric, it is not necessarily constant.

Proof. (a): By hypothesis, there are constants b, c ∈ R such that for all n ∈ N, we have an = bn+ c.

We claim that b = 0. To prove this, suppose not. Then there is an integer m ∈ N such that m >
1 + 2000/|b|. Hence,

|am − a1| = |(bm+ c)− (b+ c)| = |b|(m− 1) > |b| · 2000
|b|

= 2000.

However, since a1, am ∈ [−1000, 1000], we have |am − a1| ≤ 2000, contradicting the previous line.

Thus, we must have b = 0, as claimed. Therefore, for all n ∈ N, we have an = c, i.e., the sequence is
constant. QED (a)

(b): Let an = (−1)n, so that (an)
∞
n=1 is geometric with an = crn for c = 1 and r = −1. We have

|an| = 1 ≤ 1000 for all n ∈ N, but a1 = −1 ̸= 1 = a2, so that sequence is not constant.

[Note: There are many other examples. For any choice of r ∈ [−1, 1) and any c ∈ R such that |cr| ≤ 1000,
we have |crn| ≤ |cr| ≤ 1000 for all n ∈ N.]

24. Let (an)
∞
n=1 be a strictly decreasing real sequence. Prove that any subsequence of (an)

∞
n=1 is also

strictly decreasing.

Proof. Given a subsequence (ani)
∞
i=1, we have n1 < n2 < n3 < · · · by definition. For each i ≥ 1, we

have ani > ani+1 because ni < ni+1 and (an)
∞
n=1 is strictly decreasing. Thus, the subsequence (ani)

∞
i=1 is

strictly decreasing. QED

25. Let (an)
∞
n=1 be a sequence. For each of the functions f : N → N below, determine whether or not

(bn)
∞
n=1 is a subsequence of (an)

∞
n=1, where bn = af(n).

(a) f(n) = 5n + n! (b) f(n) = n2 − 4n+ 8 (c) f(n) = n2 − 2n+ 7

Proof. (a): YES, subsequence as follows.

Given n ∈ N, we have (n+ 1)! = (n+ 1) · n! ≥ n! and 5n+1 > 5n. Thus, f(n+ 1) > f(n). QED (a)

(b): NO, not subsequence as follows.

We have f(1) = 5 ≥ 4 = f(2), so f is not strictly increasing, so (bn) is not a subsequence. QED (b)

(a): YES, subsequence as follows.
Given n ∈ N, we have

f(n+1)−f(n) = (n+1)2−2(n+1)+7−(n2−2n+7) = n2+2n+1−2n−2+7−n2+2n−7 = 2n−1 > 0.

Thus, f(n+ 1) > f(n). QED (c)



26. Let (an), (bn), and (cn) be sequences of real numbers. Suppose that (an) is a subsequence of (bn),
and that (bn) is a subsequence of (cn). Prove that (an) is a subsequence of (cn).

Proof. Because (bn) is a subsequence of (cn), there is a strictly increasing sequence (nj)
∞
j=1 of positive

integers such that bj = cnj for each j ∈ N.
Similarly, because (an) is a subsequence of (bn), there is a strictly increasing sequence (mi)

∞
i=1 of positive

integers such that ai = bmi for each i ∈ N.
For each integer i ∈ N, define Ni = nmi ∈ N. Then for each i ∈ N, we have mi+1 > mi (since (mi) is
strictly increasing), and hence

Ni+1 = nm(i+1)
> nmi = Ni,

since (nj) is strictly increasing. Thus, (Ni)
∞
i=1 is a strictly increasing sequence of positive integers. By

definition, then, (cNi))
∞
i=1 is a subsequence of (cn). In addition, for each i ∈ N, we have

ai = bmi = cnmi
= cNi ,

so that (ai) is indeed a subsequence of (cn). QED

27. Let (an), (bn), and (cn) be sequences of real numbers. Suppose that there are integers M,N ≥ 1 such
that

• for all n ≥ M , we have an ≤ bn, and
• for all n ≥ N , we have bn ≤ cn.

Prove that there is an integer K ≥ 1 such that for all n ≥ K, we have an ≤ cn.

Proof. Let K = max{M,N} ∈ N. Given an integer n ≥ K, we have n ≥ M and n ≥ N .
Therefore an ≤ bn ≤ cn. QED

28. Let (an)
∞
n=1 be a sequence of real numbers, and let (bn)

∞
n=1 be a strictly increasing geometric sequence

of positive integers, so that (abn)
∞
n=1 is a subsequence of (an)

∞
n=1.

If (an)
∞
n=1 is a strictly increasing geometric sequence, prove that the subsequence (abn)

∞
n=1 is definitely

not geometric.

Proof. Since the two sequences are both geometric, there are real numbers r, s ∈ R such that for every
n ≥ 2, we have an = a1r

n−1 and bn = b1s
n−1.

Since a2 > a1, we have a1(r − 1) > 0. In particular, a1 ̸= 0 and r ̸= 1. Since a3 > a2, we also have
a1(r

2 − r) > 0. Dividing by a1(r − 1) > 0, it follows that r > 0.
By similar reasoning applied to the strictly increasing sequence (bn), we also have b1 ̸= 0 and s ̸= 1.
Suppose (towards a contradiction) that the subsequence (abn) were geometric. Then the ratio of the first
two terms ab1 = a1r

b1−1 and ab2 = a1r
b2−1 would equal the ratio of the third term ab3 = a1r

b3−1 and the
second term. (None of these terms is 0, since a1, r ̸= 0.) That is,

rb2−b1 =
a1r

b2−1

a1rb1−1
=

a1r
b3−1

a1rb2−1
= rb3−b2 .

Since r > 0 with r ̸= 1, it follows that b2 − b1 = b3 − b2, and hence b1(s− 1) = b1(s
2 − s). Dividing both

sides by b1(s− 1) ̸= 0, we have 1 = s, a contradiction. QED

29. Give an example of a real, non-constant, geometric sequence (an)
∞
n=1, and a strictly increasing

geometric sequence of positive integers (bn)
∞
n=1 such that the subsequence (abn)

∞
n=1 is also geometric.

Solution/Proof. Let an = (−1)n for all n ∈ N, and let bn = 2n for all n. Then both (an) and (bn)
are real, geometric sequences (since −1 and 2 are real constants). Moreover, bn is in fact a sequence of
positive integers, since 2n ∈ N for all n ∈ N.



We also have a1 = −1 ̸= 1 = a2, so (an) is non-constant. And for every n ∈ N, we have

bn+1 = 2n+1 = 2 · 2n > 2n = bn,

so that (bn) is strictly increasing. Finally, for all n ∈ N, we have

abn = (−1)bn = (−1)2
n
= 1 = 1n,

so that (abn) = (1n) is a (constant) geometric sequence. QED

Note: More generally, we could have picked an = a(−1)n (where a ∈ R∖{0} is a nonzero constant), and
bn = kn (where k ≥ 2 is a constant integer). But those are the only examples. In particular, the only
way to get this to work is to have the ratio r for (an) to be r = −1, so that (an) is nonconstant but (abn)
is constant and hence geometric.


