Solutions to Midterm Exam 2

1. (15 points) Let $m, n \in \mathbb{Z}$ be integers. Suppose that 40|(m-11) and that 40|(n+9). Prove that 40|(mn+19).

Proof. By hypothesis, there exist integers $a, b \in \mathbb{Z}$ such that m-11=40a and n+9=40b. Thus,

$$mn + 19 = (40a + 11)(40b - 9) + 19 = 40^{2}ab + 11 \cdot 40b - 9 \cdot 40a - 99 + 19$$

= $40^{2}ab + 40(11b - 9a) - 80 = 40(40ab + 11b - 9a - 2)$.

Since $40ab + 11b - 9a - 2 \in \mathbb{Z}$, we have 40|(mn + 19).

2. (20 points) Let $m, n \in \mathbb{N}$ be positive integers.

Let $d = \gcd(m, n)$, the greatest common divisor of m and n.

Prove that m|n if and only if d=m.

Proof (Method 1). (\Rightarrow) By hypothesis, m|n. In addition, m|m since $m \cdot 1 = m$. Thus, m is a common divisor of m and n, so $m \leq d$ (since d is the greatest common divisor).

On the other hand, since d|m, we have $m \ge d$. Thus, m = d

 $QED (\Rightarrow)$

QED

 (\Leftarrow) Since d|n and m=d, we have m|n

QED (\Leftarrow) QED

Proof (Method 2). Let p_1, \ldots, p_k be all the primes that divide either m or n, so that, taking the prime factorizations of m and n, we have

$$m = p_1^{r_1} \cdots p_k^{r_k}$$
 and $n = p_1^{s_1} \cdots p_k^{s_k}$,

where $r_1, \ldots, r_k \ge 0$ and $s_1, \ldots, s_k \ge 0$ are nonnegative integers. By a theorem from the book, we have $d = p_1^{t_1} \cdots p_k^{t_k}$, where $t_i = \min\{r_i, s_i\}$ for each i.

- (\Rightarrow) Since m|n, we have $r_i \leq s_i$ for each i. Therefore, for each i, we have $t_i = \min r_i, s_i = r_i$, and hence $d = p_1^{t_1} \cdots p_k^{t_k} = p_1^{r_1} \cdots p_k^{r_k} = m$
- (\Leftarrow) By the uniqueness of prime factorization, the fact that d=m implies that for each i, we have $r_i = t_i = \min\{r_i, s_i\} \le s_i$. Hence, $m = p_1^{r_1} \cdots p_k^{r_k} | p_1^{s_1} \cdots p_k^{s_k} = n$ QED (\Leftarrow)
- 3. (23 points) Let $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{3\}$ by $f(x) = \frac{3x+5}{x+1}$.

You may take my word for it that f is actually a function.

Prove that f is onto.

Proof. Given $y \in \mathbb{R} \setminus \{3\}$, let $x = \frac{5-y}{y-3}$, which is in \mathbb{R} since $y-3 \neq 0$.

If x = -1, then 5 - y = -1(y - 3), i.e., 5 - y = -y + 3, so 5 = 3, a contradiction.

Thus, we must have $x \neq -1$, so $x \in \mathbb{R} \setminus \{-1\}$. We compute:

$$f(x) = \frac{3\left(\frac{5-y}{y-3}\right)+5}{\frac{5-y}{y-3}+1} = \frac{3(5-y)+5(y-3)}{(5-y)+(y-3)} = \frac{15-3y+5y-15}{2} = \frac{2y}{2} = y$$
 QED

Note: Of course, I came up with the formula for x in my scratchwork: starting from y = f(x) and solving for x.

4. (20 points) Let $h: \mathbb{R} \to \mathbb{R}$ by $h(x) = x^2 - 6$.

Prove that $h^{-1}([-10, 10]) = [-4, 4]$.

Proof. (\subseteq): Given $x \in \text{LHS}$, then $-10 \le x^2 - 6 \le 10$. The second inequality gives $x^2 \le 16$, so that $|x| \le 4$, and hence $-4 \le x \le 4$. Thus, $x \in [-4, 4]$. QED (\subseteq)

(⊇): Given $x \in [-4, 4]$, then $|x| \le 4$, so $x^2 \le 16$. Since we also have $x^2 \ge 0$, it follows that $-10 \le -6 \le x^2 - 6 = h(x) \le 10$. Thus, $h(x) \in [-10, 10]$, and hence $x \in LHS$. QED (⊇) QED

5. (22 points) Let $(a_n)_{n=1}^{\infty}$ be a sequence that is increasing.

Suppose that $(a_n)_{n=1}^{\infty}$ has a subsequence that is constant.

Prove that $(a_n)_{n=1}^{\infty}$ is eventually constant. That is, prove that there is some integer $M \in \mathbb{N}$ such that for all $n \geq M$, we have $a_n = a_M$.

Proof. By hypothesis, there is a function $f: \mathbb{N} \to \mathbb{N}$ so that f(n) > f(m) whenever n > m, and such that $(a_{f(n)})_{n=1}^{\infty}$ is constant. This last condition means that $a_{f(n)} = a_{f(1)}$ for all $n \in \mathbb{N}$. In addition, since f is increasing, we have $f(n) \geq n$ for each $n \in \mathbb{N}$.

Let $M = f(1) \in \mathbb{N}$. Then given any integer $n \geq M$, we have

$$a_M \le a_n \le a_{f(n)} = a_{f(1)} = a_M,$$

where the first inequality is because (a_n) is an increasing sequence, and the second is because f is increasing and (a_n) is increasing. Thus, $a_n = a_M$.

OPTIONAL BONUS. (2 points.) Let $S = \{(a_n)_{n=1}^{\infty} \mid \forall n \in \mathbb{N}, a_n \in \mathbb{R}\}$ be the set of all real sequences. Define $f: S \to S$ by

$$f((a_n)_{n=1}^{\infty}) = (b_n)_{n=1}^{\infty}, \quad \text{where} \quad b_n = a_1 + a_2 + \dots + a_n.$$

Prove that f is an invertible function by finding a formula for $f^{-1}: S \to S$ and proving that it is indeed the inverse of f.

Proof. Define $g: S \to S$ by

$$g((a_n)_{n=1}^{\infty}) = (c_n)_{n=1}^{\infty}, \quad \text{where} \quad c_n = \begin{cases} a_1 & \text{if } n = 1, \\ a_n - a_{n-1} & \text{if } n \ge 2. \end{cases}$$

Since each c_n is a real number, we do indeed have $g((a_n)) \in S$ for each $(a_n) \in S$, so g is indeed a function from S to S. We will now show that g is the inverse of f.

Given $(a_n) \in S$, let $(b_n) = f((a_n))$, so that $b_n = a_1 + a_2 + \cdots + a_n$ for each $n \in \mathbb{N}$. Define $(c_n) = g(f((a_n))) = g((b_n))$. Then by definition of g, we have $c_1 = b_1 = a_1$, and for $n \ge 2$,

$$c_n = b_n - b_{n-1} = (a_1 + a_2 + \dots + a_n) - (a_1 + a_2 + \dots + a_{n-1}) = a_n.$$

Thus, we have shown that $c_n = a_n$ for all $n \in \mathbb{N}$, and hence $(c_n) = (a_n)$ as sequences. That is, $g(f((a_n)) = (a_n))$.

Conversely, given $(a_n) \in S$, let $(c_n) = g((a_n))$, so that $c_1 = a_1$ and $c_n = a_n - a_{n-1}$ for $n \ge 2$. Define $(d_n) = f(g((a_n))) = f((c_n))$. That is, for each $n \in \mathbb{N}$, we have $d_n = c_1 + \cdots + c_n$. We claim that for each $n \in \mathbb{N}$, we have $d_n = a_n$. It will then follow that $f(g((a_n))) = (a_n)$, at which point we will be done. So it remains only to prove our claim, which we now do by induction on $n \ge 1$.

Base Case: We have $d_1 = c_1 = a_1$, so the claim is true for n = 1.

Inductive Step: Suppose we know the claim for some particular $n \in \mathbb{N}$; we wish to prove it for n+1. Since $n+1 \geq 2$, we have

$$d_{n+1} = c_1 + \dots + c_n + c_{n+1} = d_n + c_{n+1} = a_n + (a_{n+1} - a_n) = a_{n+1},$$

where the first equality is by definition of d_{n+1} , the second is by definition of d_n , and the third is by the inductive hypothesis together with the fact that $c_{n+1} = a_{n+1} - a_n$. QED