Practice Problems for Midterm Exam 2

(A little more difficult, and much longer, than the real exam)

- 1. Prove or disprove the following statement: for all integers $m, n \in \mathbb{Z}$, if $m|n^2$, then m|n.
- 2. Suppose that $a, b, c \in \mathbb{Z}$ are nonzero integers such that 143a + 217b = c. Prove that gcd(a, b)|c.
- 3. Prove that $4|(13^n-1)$ for every $n \in \mathbb{N}$.
- 4. Prove that $7|(10^n 3^n)$ for every $n \in \mathbb{N}$.
- 5. Let $n \in \mathbb{N}$ be a positive integer, and write its prime factorization as $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$, where p_1, p_2, \ldots, p_k are distinct primes, and $r_1, r_2, \ldots, r_k \in \mathbb{N}$. Prove that n is a perfect cube if and only if each of the integers r_1, r_2, \ldots, r_k is divisible by 3.
- 6. Let $a, b, c \in \mathbb{N}$ be positive integers. Suppose that $c = a^2$, but also $c = b^3$. Prove that there is some $n \in \mathbb{N}$ such that $c = n^6$.
- 7. Let $p, q \in \mathbb{N}$ be prime numbers. Suppose that p|q. Prove that p=q.
- 8. Let $m, n \in \mathbb{Z}$ be positive integers. Suppose that 20|(m-7) and 20|(n-11). Prove that 20|(mn-17).
- 9. Let $a, b, c \in \mathbb{Z}$, and suppose that a|(15b+31c) and that a|15. Prove that a|c.
- 10. Let $a, b, m, n \in \mathbb{N}$, and suppose that am = bn and that gcd(a, b) = 1. Prove that there is some $k \in \mathbb{N}$ such that n = ka and m = kb.
- 11. Determine whether each of the following supposed functions is actually a function.
 - (a) $f:(0,\infty)\to(0,\infty)$ by $f(x)=\frac{x-1}{\lceil x\rceil}$ [$\lceil x\rceil$ denotes the ceiling function of x]
 - (b) $g: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ by $g(A) = \{n + 3 \mid n \in A\}.$
 - (c) $h: \mathcal{P}(\mathbb{N}) \to \mathbb{N}$ by $h(A) = \min A$. [min A denotes the smallest element of A.]
 - (d) $k: \mathcal{P}(\mathbb{N}) \setminus \{\varnothing\} \to \mathbb{N}$ by $k(A) = \max A$. [max A denotes the largest element of A.]
 - (e) $F: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ by $F(n) = \{m \in \mathbb{N} \mid m \text{ is a divisor of } n\}$.
- 12. For each of the following functions, decide whether or not it is injective, and also whether or not it is surjective. If it is both, find a formula for its inverse function. Don't forget to prove everything you claim.
 - (a) $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ by $f(x) = \frac{x}{x-1}$.
 - (b) $g: \mathbb{R} \setminus \{\pm 1\} \to \mathbb{R}$ by $g(x) = f(x^2)$.
 - (c) $h: A \to \mathbb{R}$ by $h = g|_A$, where $A = [0, 1) \cup (1, \infty)$
 - (d) $k : \mathbb{R} \to \mathbb{R}$ by $k(x) = x + \lfloor x \rfloor$.
 - (e) $F: \mathbb{R} \setminus \{\pm 1\} \to \mathbb{R}$ by $F(x) = \frac{x}{x^2 1}$
- 13. (a) Find the range R of the function h in #12(c). If we now view the target set of h as being R, find a formula for the inverse of h.
- (b) Do the same for the function k in #12(d).

- 14. Define $f: (-3,1] \to (5,23]$ by $f(x) = \frac{3x^2 + 23}{x^2 + 1}$.
 - (a) Prove that f is indeed a function from (-3, 1] to (5, 23]
 - (b) Prove that f is onto.
 - (c) Prove that the inverse image $f^{-1}((5,13])$ is $(-3,-1] \cup \{1\}$.
- 15. Let $f:A\to B$ and $g:B\to C$ be functions, and let $S\subseteq A$ and $T\subseteq C$ be subsets. Prove that

$$(g\circ f)(S)=g\big(f(S)\big)\quad\text{and}\quad (g\circ f)^{-1}(T)=f^{-1}\big(g^{-1}(T)\big).$$

- 16. Let $f:A\to A$ and $g:A\to B$ be functions. Assume that g is invertible, and let $h=g\circ f\circ g^{-1}:B\to B$.
 - (a) Prove that $h \circ h = g \circ f \circ f \circ g^{-1}$.
 - (b) If f is invertible, prove that h is invertible, and that $h^{-1} = g \circ f^{-1} \circ g^{-1}$.
- 17. Let $f:A\to B$ and $g:B\to C$ be functions. We saw in Theorem 6.2.6 that if f and g are both invertible, then $g\circ f:A\to C$ is invertible. Prove that the converse is false. That is, give examples of functions $f:A\to B$ and $g:B\to C$ such that $g\circ f$ is invertible but at least one of f or g is not invertible.
- 18. Define $g: \mathbb{R} \setminus \{2\} \to \mathbb{R}$ by $g(x) = \frac{4x}{x-2}$. Prove that:
 - (a) g is not onto.
 - (b) g([-2,1]) = [-4,2]
 - (c) $g((2,6]) = [6,\infty)$
- 19. Define $F: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$ by $F(x) = \frac{5x-5}{x+1}$.

Define $G: [2,3] \to [3,4]$ by $G(x) = F(x^2)$. Prove that:

- (a) G is indeed a function.
- (b) G is bijective.
- 20. Prove Theorem 6.2.8(a): Let $f: A \to B$ be a function, and let $C, D \subseteq A$ be subsets. If $C \subseteq D$, then (prove that) $f(C) \subseteq f(D)$.
- 21. Let $h: \mathbb{R} \to \mathbb{R}$ by $h(x) = \frac{4x}{x^2 + 1}$. Prove the following equalities of sets.

(a)
$$h^{-1}([2,6)) = \{1\}$$

(b)
$$h((-\infty, -1]) = [-2, 0)$$

- 22. Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be real sequences, and suppose that there is some $m \in \mathbb{N}$ such that $a_m = b_m$ and $a_{m+1} = b_{m+1}$.
 - (a) If both sequences are arithmetic, prove that $a_n = b_n$ for all $n \in \mathbb{N}$.
 - (b) If both sequences are geometric, prove that $a_n = b_n$ for all $n \in \mathbb{N}$.
- 23. Let $(a_n)_{n=1}^{\infty}$ be a real sequence. Suppose that for $n \in \mathbb{N}$, we have $|a_n| \leq 1000$.
 - (a) If $(a_n)_{n=1}^{\infty}$ is arithmetic, prove that it is a constant sequence.
 - (b) Show, by example, that if $(a_n)_{n=1}^{\infty}$ is geometric, it is **not** necessarily constant.
- 24. Let $(a_n)_{n=1}^{\infty}$ be a strictly decreasing real sequence. Prove that any subsequence of $(a_n)_{n=1}^{\infty}$ is also strictly decreasing.

25. Let $(a_n)_{n=1}^{\infty}$ be a sequence. For each of the functions $f: \mathbb{N} \to \mathbb{N}$ below, determine whether or not $(b_n)_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$, where $b_n = a_{f(n)}$.

(a)
$$f(n) = 5^n + n!$$
 (b) $f(n) = n^2 - 4n + 8$ (c) $f(n) = n^2 - 2n + 7$

- 26. Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Suppose that (a_n) is a subsequence of (b_n) , and that (b_n) is a subsequence of (c_n) . Prove that (a_n) is a subsequence of (c_n) .
- 27. Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Suppose that there are integers $M, N \ge 1$ such that
 - for all $n \geq M$, we have $a_n \leq b_n$, and
 - for all $n \geq N$, we have $b_n \leq c_n$.

Prove that there is an integer $K \geq 1$ such that for all $n \geq K$, we have $a_n \leq c_n$.

- 28. Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers, and let $(b_n)_{n=1}^{\infty}$ be a strictly increasing geometric sequence of positive integers, so that $(a_{b_n})_{n=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$.
- If $(a_n)_{n=1}^{\infty}$ is a strictly increasing geometric sequence, prove that the subsequence $(a_{b_n})_{n=1}^{\infty}$ is definitely **not** geometric.
- 29. Give an example of a real, non-constant, geometric sequence $(a_n)_{n=1}^{\infty}$, and a strictly increasing geometric sequence of positive integers $(b_n)_{n=1}^{\infty}$ such that the subsequence $(a_{b_n})_{n=1}^{\infty}$ is also geometric.

[Note: As always, don't forget to prove all of your claims.]