
Math 220, Section 03, Fall 2025 Professor Rob Benedetto

Solutions to Practice Problems 1

1. Let A = {1, 2, 3, 4, 5}, B = {2, 5, 1, 7}, C = {3, 4, 4, 4, 7}. Compute each of the following
sets:

Answers. Before starting, it will help to rewrite B = {1, 2, 5, 7} and C = {3, 4, 7}. So:
a. A ∩B = {1, 2, 5}.
b. A ∩ C = {3, 4}.
c. B ∩ C = {7}.
d. A ∩B ∩ C = ∅.
e. A ∪B = {1, 2, 3, 4, 5, 7}.
f. (A ∪ C) ∩B = {1, 2, 3, 4, 5, 7} ∩ {1, 2, 5, 7} = {1, 2, 5, 7}.
g. A∖ C = {1, 2, 5}.
h. [(B∪C)∩A]∪(C∖B) = [{1, 2, 3, 4, 5, 7}∩A]∪{3, 4} = {1, 2, 3, 4, 5}∪{3, 4} = {1, 2, 3, 4, 5}.
i. C × C = {(3, 3), (3, 4), (3, 7), (4, 3), (4, 4), (4, 7), (7, 3), (7, 4), (7, 7)}.
j. (A ∩ C)× (B ∩ C) = {3, 4} × {7} = {(3, 7), (4, 7)}.

2. Let A,B,C be sets. If A ⊆ B, prove that (C ∖B) ⊆ (C ∖ A).

Proof. Given x ∈ C ∖B. Then x ∈ C, but x ̸∈ B.
If we had x ∈ A, then x ∈ B, a contradiction. Thus, x ̸∈ A.
Since x ∈ C and x ̸∈ A, we have x ∈ C ∖ A. QED

3. Show that the converse of problem 2 fails; that is, give examples of set A,B,C such that
(C ∖B) ⊆ (C ∖ A), but A ̸⊆ B.

Answer/Proof. Choose A = {1}, B = {2}, and C = {3}. Then

(C ∖B) = {3} ⊆ {3} = (C ∖ A),

but A ̸⊆ B, since 1 ∈ A but 1 ̸∈ B. QED

[There are many ways to do this; just choose your sets so that A is not a subset of C.]

4. For each of the following sets, write out all the elements in the form {blah, blah, . . . , blah}.
Answers.
a. ∅ = {}.
b. P(∅) = {∅}.
c. P

(
P(∅)

)
=

{
∅, {∅}

}
.

5. Let A,B,C,D be sets. Prove that (A× C) ∩ (B ×D) = (A ∩B)× (C ∩D).

Proof. (⊆): Given (x, y) ∈ (A × C) ∩ (B ×D), we have (x, y) ∈ A × C, and hence x ∈ A
and y ∈ C; we also have (x, y) ∈ B ×D, and hence x ∈ B and y ∈ D.
Thus, x ∈ A ∩B, and y ∈ C ∩D. That is, (x, y) ∈ (A ∩B)× (C ∩D). QED (⊆)

(⊇): Given (x, y) ∈ (A ∩B)× (C ∩D), we have x ∈ A ∩B and y ∈ C ∩D.



Thus, x ∈ A and y ∈ C, so that (x, y) ∈ A × C. Similarly, x ∈ B and y ∈ D, so that
(x, y) ∈ B ×D. That is, (x, y) ∈ (A× C) ∩ (B ×D). QED (⊇)

6. Let A,B,C,D be sets. Prove that (A× C) ∪ (B ×D) ⊆ (A ∪B)× (C ∪D).

Proof. Given (x, y) ∈ (A× C) ∪ (B ×D), we have two cases.

Case 1: (x, y) ∈ A× C. Then x ∈ A ⊆ A ∪B, and y ∈ C ⊆ C ∪D.
Hence, (x, y) ∈ (A ∪B)× (C ∪D).

Case 2: (x, y) ∈ B ×D. Then x ∈ B ⊆ A ∪B, and y ∈ D ⊆ C ∪D.
Hence, (x, y) ∈ (A ∪B)× (C ∪D). QED

7. Give examples of sets A,B,C,D such that (A× C) ∪ (B ×D) ̸= (A ∪B)× (C ∪D).

Answer/Proof. Choose A = {1}, B = {2}, C = {3}, and D = {4}. Then

(A× C) ∪ (B ×D) = {(1, 3)} ∪ {(2, 4)} = {(1, 3), (2, 4)},

but
(A ∪B)× (C ∪D) = {1, 2} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4)}.

The two sets are not equal because, for example, (1, 4) belongs to the second one but not
the first. QED

[Again, there are many ways to do this.]

8. Find
⋃

t∈(0,∞)

(−t,∞) and prove your claim.

Solution/Proof We claim that
⋃

t∈(0,∞)

(−t,∞) = R.

Proof of claim: (⊆): Given x ∈ LHS, there is some t ∈ (0,∞) such that x ∈ (−t,∞) ⊆ R,
and hence x ∈ R.
(⊇): Given x ∈ R, we consider two cases.
Case 1. If x ≥ 0, then x ∈ (−1,∞) ⊆ LHS
Case 2. If x ̸≥ 0, then x < 0. Let t = 1 − x ∈ (0,∞). Then x = 1 − t > −t. Thus,
x ∈ (−t,∞) ⊆ LHS. QED (claim)

9. Find
⋃

t∈(0,∞)

(t,∞) and prove your claim.

Solution/Proof. We claim that
⋃

t∈(0,∞)

(t,∞) = (0,∞).

Proof of claim: (⊆): Given x ∈ LHS, there is some t ∈ (0,∞) such that x ∈ (t,∞). Thus,
x > t > 0, and hence x ∈ (0,∞).
(⊇): Given x ∈ (0,∞), let t = x/2 ∈ (0,∞). Then x > t, and hence x ∈ (t,∞) ⊆ LHS.
QED

10. Prove that
⋂

t∈(0,∞)

(t,∞) = ∅.



Proof. (⊇): This is vacuous, since ∅ has no elements.

(⊆). We proceed by contradiction. Suppose there were an element x ∈ LHS. Then in
particular, x ∈ (1,∞), so x > 0. Choosing t = x ∈ (0,∞), then we have x ̸∈ (t,∞), and
hence x ̸∈ LHS, a contradiction. Thus, the set on the LHS must be empty. QED

11. For each positive integer k ∈ N, define

Sk = {n ∈ N | k divides n}.

For any integers k,m ∈ N, prove that

k|m ⇐⇒ Sm ⊆ Sk.

Proof. (=⇒): Given k,m ∈ N such that k|m, and given n ∈ Sm, we have m|n. That is,
there are integers i, j ∈ N such that m = ki and n = mj. Thus, n = (ki)j = k(ij). Since
ij ∈ N, we have k|n, and hence n ∈ Sk.

(⇐=): Given k,m ∈ N such that Sm ⊆ Sk, we have m = m · 1, and hence m|m. Thus,
m ∈ Sm ⊆ Sk, meaning that k divides m, i.e., k|m. QED

12. Demonstrate, using a truth table, that (P ∧ (∼ Q)) ∨ ((∼ P ) ∨ Q) is a tautology, i.e.,
that it is always true, regardless of whether P and Q are true or false.

Answer/Proof :
P Q ∼ P ∼ Q P ∧ (∼ Q) (∼ P ) ∨Q (P ∧ (∼ Q)) ∨ ((∼ P ) ∨Q)
T T F F F T T
T F F T T F T
F T T F F T T
F F T T F T T

13. Prove the following statement: ∀a ∈ N,∃b, c ∈ N s.t. ab = c3.

Proof. Given a ∈ N, let b = a2 ∈ N, and let c = a ∈ N. Then ab = a · a2 = a3 = c3. QED

[There are many other ways to do this, but this is probably the easiest.]

14. Give the negation of the following statement: ∀a ∈ N,∃b, c ∈ N s.t. a = bc3 and c ̸= 1.

Answer. ∃a ∈ N s.t. ∀b, c ∈ N, either a ̸= bc3 or c = 1.

15. Prove the statement you gave as the answer to problem 14 above.

Proof. Let a = 1 ∈ N. Given b, c ∈ N, if c = 1, we are done. Thus, we may assume that
c ≥ 2. Since b ≥ 1, we have bc3 ≥ 1 · 23 = 8 > 1 = a, and hence a ̸= bc3. QED

16. Consider the statement “Everybody loves a lover.” Let’s assume that this statement is
true, where a “lover” means anybody who loves somebody. Under that assumption, together
with the assumption that Fred loves Jane, prove that everybody loves everybody.

Proof. Let S be the set of all people. Given x, y ∈ S, then because Fred is a lover, y must
love Fred. Thus, y is a lover, and therefore x loves y. QED



17. Find the contrapositive, the converse, and the negation of the following implication
statement: (

(S ⊆ T ) ∨ (a = b)
)
⇒ (a, b) ∈ S × T.

Answer. Contrapositive: (a, b) ̸∈ S × T ⇒
(
(S ̸⊆ T ) ∧ (a ̸= b)

)
.

Converse: (a, b) ∈ S × T ⇒
(
(S ⊆ T ) ∨ (a = b)

)
.

Negation:
(
(S ⊆ T ) ∨ (a = b)

)
∧
(
(a, b) ̸∈ S × T

)
.

18. Let n ∈ Z. Prove the following are equivalent:
a. 5|(n+ 2) b. 5|(2n− 1) c. 5|(6n+ 7)

Proof. (a ⇒ b): There is some m ∈ Z such that n+ 2 = 5m.
Thus, 2n− 1 = 2(n+ 2)− 4− 1 = 2(5m)− 5 = 5(2m− 1).
Since 2m− 1 ∈ Z, we have 5|(2n− 1).

(b ⇒ c): There is some m ∈ Z such that 2n− 1 = 5m.
Thus, 6n+ 7 = 3(2n− 1) + 10 = 3(5m) + 10 = 5(3m+ 2).
Since 3m+ 2 ∈ Z, we have 5|(6n+ 7).

(c ⇒ a): There is some m ∈ Z such that 6n+ 7 = 5m.
Thus, n+ 2 = 6n+ 7− 5n− 5 = 5m− 5n− 5 = 5(m− n− 1).
Since m− n− 1 ∈ Z, we have 5|(n+ 2). QED

19. Prove that there is no way to choose real numbers a, b, c ∈ R so that the polynomial
f(x) = ax2 + bx+ c satisfies f(0) = 3, f(1) = f(−1) = 2, and f(2) = 5.

Proof. We proceed by contradiction.
Suppose there were such a polynomial f(x) = ax2 + bx+ c. Then 3 = f(0) = c. In addition
2 = f(1) = a+b+c = a+b+3, so that a+b = −1. Moreover, 2 = f(−1) = a−b+c = a−b+3,
so that a− b = −1. Adding these two equations, we have 2a = −2, and hence a = −1; then
b = 0. Thus, 5 = f(2) = 4a+ 2b+ c = −4 + 0 + 3 = −1, a contradiction. QED

20. For any x ∈ R, prove that there exists a unique y ∈ R such that 5x+ 3y = 7.

Proof. (Existence): Given x ∈ R, let y = (7− 5x)/3 ∈ R. Then

5x+ 3y = 5x+ (7− 5x) = 7.

(Uniqueness): Given x ∈ R and y1, y2 ∈ R such that 5x + 3y1 = 7 = 5x + 3y2. Then
3y1 = 3y2, and hence y1 = y2. QED

21. Prove, for every n ∈ N, that 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

Proof. By induction on n.
Base Case: For n = 1, LHS = 1 = 12, as desired.

Inductive Step: Given that the claim holds for n = k ∈ N, we have

1 + 3 + · · ·+
(
2(k + 1)− 1

)
= 1 + 3 + · · ·+ (2k − 1) + (2k + 1) = k2 + 2k + 1 = (k + 1)2,

where the second equality is by the inductive hypothesis. QED



22. Define a sequence a1, a2, a3, . . . of real numbers by

a1 = 1, and for n ≥ 1, an+1 = 3− 1

an
.

Prove that for every n ∈ N∖ {1, 2}, we have an ∈ (2, 3), and an > an−1.

Proof. By induction on n ≥ 3.
Base Case: We compute a2 = 3− 1/1 = 2, and a3 = 3− 1/2 = 5/2. Since 5/2 ∈ (2, 3), and
5/2 > 2 = a2, the base case holds.

Inductive Step: Given that the claim holds for some n = k ≥ 3, we have

ak+1 = 3− 1

ak
< 3, since ak > 2 > 0, and

ak+1 = 3− 1

ak
> 3− 1

ak−1

= ak > 2.

Thus, we have both ak+1 > ak, and ak+1 ∈ (ak, 3) ⊆ (2, 3). QED

23. Prove, for all n ∈ N, that the integer 1 + 32n−1 is divisible by 4.

Proof. By induction on n.
Base Case: For n = 1, we have 1 + 32−1 = 1 + 3 = 4, which is divisible by 4.

Inductive Step: Given that the claim holds for n = k ∈ N, there is some m ∈ N such that
1 + 32n−1 = 4m. Therefore,

1 + 32(k+1)−1 = 1 + 32k−1 − 32k−1 + 32k+1 = 4m+ 32k−1(9− 1) = 4(m+ 2 · 32k−1).

Since m+ 2 · 32k−1 ∈ N, the integer 1 + 32(k+1)−1 is divisible by 4. QED


