Solutions to Practice Problems 1

1. Let $A = \{1, 2, 3, 4, 5\}$, $B = \{2, 5, 1, 7\}$, $C = \{3, 4, 4, 4, 7\}$. Compute each of the following sets:

Answers. Before starting, it will help to rewrite $B = \{1, 2, 5, 7\}$ and $C = \{3, 4, 7\}$. So:

- a. $A \cap B = \{1, 2, 5\}.$
- b. $A \cap C = \{3, 4\}.$
- c. $B \cap C = \{7\}$.
- d. $A \cap B \cap C = \emptyset$.
- e. $A \cup B = \{1, 2, 3, 4, 5, 7\}$.
- f. $(A \cup C) \cap B = \{1, 2, 3, 4, 5, 7\} \cap \{1, 2, 5, 7\} = \{1, 2, 5, 7\}.$
- g. $A \setminus C = \{1, 2, 5\}.$
- h. $[(B \cup C) \cap A] \cup (C \setminus B) = [\{1, 2, 3, 4, 5, 7\} \cap A] \cup \{3, 4\} = \{1, 2, 3, 4, 5\} \cup \{3, 4\} = \{1, 2, 3, 4, 5\}.$
- i. $C \times C = \{(3,3), (3,4), (3,7), (4,3), (4,4), (4,7), (7,3), (7,4), (7,7)\}.$
- j. $(A \cap C) \times (B \cap C) = \{3, 4\} \times \{7\} = \{(3, 7), (4, 7)\}.$
- 2. Let A, B, C be sets. If $A \subseteq B$, prove that $(C \setminus B) \subseteq (C \setminus A)$.

Proof. Given $x \in C \setminus B$. Then $x \in C$, but $x \notin B$.

If we had $x \in A$, then $x \in B$, a contradiction. Thus, $x \notin A$.

Since $x \in C$ and $x \notin A$, we have $x \in C \setminus A$.

QED

3. Show that the converse of problem 2 fails; that is, give examples of set A, B, C such that $(C \setminus B) \subseteq (C \setminus A)$, but $A \not\subseteq B$.

Answer/Proof. Choose $A = \{1\}$, $B = \{2\}$, and $C = \{3\}$. Then

$$(C \setminus B) = \{3\} \subseteq \{3\} = (C \setminus A),$$

but $A \not\subseteq B$, since $1 \in A$ but $1 \not\in B$.

QED

[There are many ways to do this; just choose your sets so that A is not a subset of C.]

- 4. For each of the following sets, write out all the elements in the form $\{blah, blah, \dots, blah\}$.
- Answers.
- a. $\emptyset = \{\}.$
- b. $\mathcal{P}(\emptyset) = \{\emptyset\}.$
- c. $\mathcal{P}(\mathcal{P}(\varnothing)) = \{\varnothing, \{\varnothing\}\}.$
- 5. Let A, B, C, D be sets. Prove that $(A \times C) \cap (B \times D) = (A \cap B) \times (C \cap D)$.

Proof. (\subseteq): Given $(x, y) \in (A \times C) \cap (B \times D)$, we have $(x, y) \in A \times C$, and hence $x \in A$ and $y \in C$; we also have $(x, y) \in B \times D$, and hence $x \in B$ and $y \in D$.

Thus, $x \in A \cap B$, and $y \in C \cap D$. That is, $(x, y) \in (A \cap B) \times (C \cap D)$. QED (\subseteq)

 (\supseteq) : Given $(x,y) \in (A \cap B) \times (C \cap D)$, we have $x \in A \cap B$ and $y \in C \cap D$.

Thus, $x \in A$ and $y \in C$, so that $(x,y) \in A \times C$. Similarly, $x \in B$ and $y \in D$, so that $(x,y) \in B \times D$. That is, $(x,y) \in (A \times C) \cap (B \times D)$.

6. Let A, B, C, D be sets. Prove that $(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$.

Proof. Given $(x,y) \in (A \times C) \cup (B \times D)$, we have two cases.

Case 1: $(x,y) \in A \times C$. Then $x \in A \subseteq A \cup B$, and $y \in C \subseteq C \cup D$.

Hence, $(x, y) \in (A \cup B) \times (C \cup D)$.

Case 2: $(x,y) \in B \times D$. Then $x \in B \subseteq A \cup B$, and $y \in D \subseteq C \cup D$.

Hence,
$$(x, y) \in (A \cup B) \times (C \cup D)$$
.

QED

7. Give examples of sets A, B, C, D such that $(A \times C) \cup (B \times D) \neq (A \cup B) \times (C \cup D)$.

Answer/Proof. Choose $A = \{1\}, B = \{2\}, C = \{3\}, \text{ and } D = \{4\}.$ Then

$$(A \times C) \cup (B \times D) = \{(1,3)\} \cup \{(2,4)\} = \{(1,3),(2,4)\},\$$

but

$$(A \cup B) \times (C \cup D) = \{1, 2\} \times \{3, 4\} = \{(1, 3), (1, 4), (2, 3), (2, 4)\}.$$

The two sets are not equal because, for example, (1,4) belongs to the second one but not the first.

[Again, there are many ways to do this.]

8. Find $\bigcup_{t \in (0,\infty)} (-t,\infty)$ and prove your claim.

Solution/Proof We claim that $\bigcup_{t \in (0,\infty)} (-t,\infty) = \mathbb{R}$.

Proof of claim: (\subseteq): Given $x \in \text{LHS}$, there is some $t \in (0, \infty)$ such that $x \in (-t, \infty) \subseteq \mathbb{R}$, and hence $x \in \mathbb{R}$.

 (\supseteq) : Given $x \in \mathbb{R}$, we consider two cases.

Case 1. If $x \geq 0$, then $x \in (-1, \infty) \subseteq LHS$

Case 2. If $x \not\geq 0$, then x < 0. Let $t = 1 - x \in (0, \infty)$. Then x = 1 - t > -t. Thus, $x \in (-t, \infty) \subseteq \text{LHS}$.

9. Find $\bigcup_{t \in (0,\infty)} (t,\infty)$ and prove your claim.

Solution/Proof. We claim that $\bigcup_{t \in (0,\infty)} (t,\infty) = (0,\infty)$.

Proof of claim: (\subseteq): Given $x \in \text{LHS}$, there is some $t \in (0, \infty)$ such that $x \in (t, \infty)$. Thus, x > t > 0, and hence $x \in (0, \infty)$.

 (\supseteq) : Given $x \in (0, \infty)$, let $t = x/2 \in (0, \infty)$. Then x > t, and hence $x \in (t, \infty) \subseteq LHS$. QED

10. Prove that
$$\bigcap_{t \in (0,\infty)} (t,\infty) = \emptyset$$
.

Proof. (\supset): This is vacuous, since \varnothing has no elements.

(\subseteq). We proceed by contradiction. Suppose there were an element $x \in LHS$. Then in particular, $x \in (1, \infty)$, so x > 0. Choosing $t = x \in (0, \infty)$, then we have $x \notin (t, \infty)$, and hence $x \notin LHS$, a contradiction. Thus, the set on the LHS must be empty. QED

11. For each positive integer $k \in \mathbb{N}$, define

$$S_k = \{ n \in \mathbb{N} \mid k \text{ divides } n \}.$$

For any integers $k, m \in \mathbb{N}$, prove that

$$k|m \iff S_m \subseteq S_k.$$

Proof. (\Longrightarrow): Given $k, m \in \mathbb{N}$ such that k|m, and given $n \in S_m$, we have m|n. That is, there are integers $i, j \in \mathbb{N}$ such that m = ki and n = mj. Thus, n = (ki)j = k(ij). Since $ij \in \mathbb{N}$, we have k|n, and hence $n \in S_k$.

(\Leftarrow): Given $k, m \in \mathbb{N}$ such that $S_m \subseteq S_k$, we have $m = m \cdot 1$, and hence m|m. Thus, $m \in S_m \subseteq S_k$, meaning that k divides m, i.e., k|m.

12. Demonstrate, using a truth table, that $(P \land (\sim Q)) \lor ((\sim P) \lor Q)$ is a tautology, i.e., that it is always true, regardless of whether P and Q are true or false.

Answer/Proof:

P	Q	$\sim P$	$\sim Q$	$P \wedge (\sim Q)$	$(\sim P) \lor Q$	$(P \land (\sim Q)) \lor ((\sim P) \lor Q)$
Τ	Т	F	F	F	T	Т
T	F	F	Т	Т	F	Т
F	Т	Т	F	F	Т	T
F	F	Т	Т	F	Т	Т

13. Prove the following statement: $\forall a \in \mathbb{N}, \exists b, c \in \mathbb{N} \text{ s.t. } ab = c^3.$

Proof. Given $a \in \mathbb{N}$, let $b = a^2 \in \mathbb{N}$, and let $c = a \in \mathbb{N}$. Then $ab = a \cdot a^2 = a^3 = c^3$. QED [There are many other ways to do this, but this is probably the easiest.]

14. Give the negation of the following statement: $\forall a \in \mathbb{N}, \exists b, c \in \mathbb{N} \text{ s.t. } a = bc^3 \text{ and } c \neq 1.$ **Answer**. $\exists a \in \mathbb{N} \text{ s.t. } \forall b, c \in \mathbb{N}, \text{ either } a \neq bc^3 \text{ or } c = 1.$

15. Prove the statement you gave as the answer to problem 14 above.

Proof. Let $a=1 \in \mathbb{N}$. Given $b, c \in \mathbb{N}$, if c=1, we are done. Thus, we may assume that $c \geq 2$. Since $b \geq 1$, we have $bc^3 \geq 1 \cdot 2^3 = 8 > 1 = a$, and hence $a \neq bc^3$. QED

16. Consider the statement "Everybody loves a lover." Let's assume that this statement is true, where a "lover" means anybody who loves somebody. Under that assumption, together with the assumption that Fred loves Jane, prove that everybody loves everybody.

Proof. Let S be the set of all people. Given $x, y \in S$, then because Fred is a lover, y must love Fred. Thus, y is a lover, and therefore x loves y. QED

17. Find the contrapositive, the converse, and the negation of the following implication statement:

$$((S \subseteq T) \lor (a = b)) \Rightarrow (a, b) \in S \times T.$$

Answer. Contrapositive: $(a,b) \notin S \times T \Rightarrow ((S \not\subseteq T) \land (a \neq b))$.

Converse: $(a,b) \in S \times T \Rightarrow ((S \subseteq T) \vee (a=b)).$

Negation: $((S \subseteq T) \lor (a = b)) \land ((a, b) \notin S \times T)$.

18. Let $n \in \mathbb{Z}$. Prove the following are equivalent:

a.
$$5|(n+2)|$$

b.
$$5|(2n-1)$$

c.
$$5|(6n+7)$$

Proof. (a \Rightarrow b): There is some $m \in \mathbb{Z}$ such that n + 2 = 5m.

Thus, 2n - 1 = 2(n + 2) - 4 - 1 = 2(5m) - 5 = 5(2m - 1).

Since $2m-1 \in \mathbb{Z}$, we have 5|(2n-1).

(b \Rightarrow c): There is some $m \in \mathbb{Z}$ such that 2n - 1 = 5m.

Thus, 6n + 7 = 3(2n - 1) + 10 = 3(5m) + 10 = 5(3m + 2).

Since $3m + 2 \in \mathbb{Z}$, we have 5|(6n + 7).

 $(c \Rightarrow a)$: There is some $m \in \mathbb{Z}$ such that 6n + 7 = 5m.

Thus, n+2=6n+7-5n-5=5m-5n-5=5(m-n-1).

Since $m - n - 1 \in \mathbb{Z}$, we have 5|(n + 2).

QED

19. Prove that there is no way to choose real numbers $a, b, c \in \mathbb{R}$ so that the polynomial $f(x) = ax^2 + bx + c$ satisfies f(0) = 3, f(1) = f(-1) = 2, and f(2) = 5.

Proof. We proceed by contradiction.

Suppose there were such a polynomial $f(x) = ax^2 + bx + c$. Then 3 = f(0) = c. In addition 2 = f(1) = a+b+c = a+b+3, so that a+b = -1. Moreover, 2 = f(-1) = a-b+c = a-b+3, so that a-b = -1. Adding these two equations, we have 2a = -2, and hence a = -1; then b = 0. Thus, 5 = f(2) = 4a + 2b + c = -4 + 0 + 3 = -1, a contradiction. QED

20. For any $x \in \mathbb{R}$, prove that there exists a unique $y \in \mathbb{R}$ such that 5x + 3y = 7.

Proof. (Existence): Given $x \in \mathbb{R}$, let $y = (7 - 5x)/3 \in \mathbb{R}$. Then

$$5x + 3y = 5x + (7 - 5x) = 7.$$

(Uniqueness): Given $x \in \mathbb{R}$ and $y_1, y_2 \in \mathbb{R}$ such that $5x + 3y_1 = 7 = 5x + 3y_2$. Then $3y_1 = 3y_2$, and hence $y_1 = y_2$.

21. Prove, for every $n \in \mathbb{N}$, that $1 + 3 + 5 + \cdots + (2n - 1) = n^2$.

Proof. By induction on n.

Base Case: For n = 1, LHS = $1 = 1^2$, as desired.

Inductive Step: Given that the claim holds for $n = k \in \mathbb{N}$, we have

$$1+3+\cdots+(2(k+1)-1)=1+3+\cdots+(2k-1)+(2k+1)=k^2+2k+1=(k+1)^2$$

where the second equality is by the inductive hypothesis.

QED

22. Define a sequence a_1, a_2, a_3, \ldots of real numbers by

$$a_1 = 1$$
, and for $n \ge 1$, $a_{n+1} = 3 - \frac{1}{a_n}$.

Prove that for every $n \in \mathbb{N} \setminus \{1, 2\}$, we have $a_n \in (2, 3)$, and $a_n > a_{n-1}$.

Proof. By induction on $n \geq 3$.

Base Case: We compute $a_2 = 3 - 1/1 = 2$, and $a_3 = 3 - 1/2 = 5/2$. Since $5/2 \in (2, 3)$, and $5/2 > 2 = a_2$, the base case holds.

Inductive Step: Given that the claim holds for some $n = k \ge 3$, we have

$$a_{k+1} = 3 - \frac{1}{a_k} < 3$$
, since $a_k > 2 > 0$, and

$$a_{k+1} = 3 - \frac{1}{a_k} > 3 - \frac{1}{a_{k-1}} = a_k > 2.$$

Thus, we have both $a_{k+1} > a_k$, and $a_{k+1} \in (a_k, 3) \subseteq (2, 3)$.

QED

23. Prove, for all $n \in \mathbb{N}$, that the integer $1 + 3^{2n-1}$ is divisible by 4.

Proof. By induction on n.

Base Case: For n = 1, we have $1 + 3^{2-1} = 1 + 3 = 4$, which is divisible by 4.

Inductive Step: Given that the claim holds for $n = k \in \mathbb{N}$, there is some $m \in \mathbb{N}$ such that $1 + 3^{2n-1} = 4m$. Therefore,

$$1 + 3^{2(k+1)-1} = 1 + 3^{2k-1} - 3^{2k-1} + 3^{2k-1} = 4m + 3^{2k-1}(9-1) = 4(m+2 \cdot 3^{2k-1}).$$

Since $m + 2 \cdot 3^{2k-1} \in \mathbb{N}$, the integer $1 + 3^{2(k+1)-1}$ is divisible by 4. QED