Solutions to Midterm Exam 1

1. (20 points, 4 parts) Let $A = \{3, 4, 6\}, B = \{1, 3\}, \text{ and } C = \{1, 6\}.$ Compute each of the following sets.

Briefly justify. (E.g., if I asked for $(A \cap B) \cup C$, first say what $A \cap B$ is.)

1a.
$$(A \cup B) \setminus C$$

1b.
$$A \cup (B \setminus C)$$

1c.
$$(C \setminus B) \times A$$

1d.
$$C \setminus (B \times A)$$

Solutions. (a): $A \cup B = \{1, 3, 4, 6\}$, so $(A \cup B) \setminus C = \{3, 4\}$

(b):
$$B \setminus C = \{3\}$$
, so $A \cup (B \setminus C) = \{3, 4, 6\}$

(c):
$$C \setminus B = \{6\}$$
, so $(C \setminus B) \times A = \{(6,3), (6,4), (6,6)\}$

(d): $B \times A$ is a set of ordered pairs, but C has no ordered pairs, so $C \setminus (B \times A) = C = \boxed{\{1,6\}}$

2. (10 points, 2 parts) Let S, T, V, W be sets. Suppose that $S \subseteq T$ and $V \subseteq W$.

2a. (5 points) Prove that $S \cap V \subseteq T \cap W$.

2b. (5 points) Prove that $S \cup V \subseteq T \cup W$.

Proofs. (a): Given $x \in S \cap V$, we have $x \in S$, so $x \in T$.

We also have $x \in V$, so $x \in W$.

Thus,
$$x \in T \cap W$$
.

(b): Given $x \in S \cup V$, we have either $x \in S$ or $x \in V$.

If $x \in S$, then $x \in T \subseteq T \cup W$.

Otherwise, we have
$$x \in V$$
, so that $x \in W \subseteq T \cup W$.

QED

3. (18 points) Use mathematical induction to prove that for every $n \in \mathbb{N}$,

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

Proof. By induction on $n \ge 1$.

Base: For
$$n = 1$$
, we have LHS = $\frac{1}{1 \cdot 2} = \frac{1}{2} = \frac{n}{n+1} = \text{RHS}$

QED Base

Ind. Step: Assume it's true for some
$$n = k \ge 1$$
. Then
$$\frac{1}{1 \cdot 2} + \dots + \frac{1}{(k+1)(k+2)} = \frac{1}{1 \cdot 2} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$
 (by the inductive hypothesis), so continuing, this is:

(by the inductive hypothesis), so continuing, this is:
$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2}$$

QED

4. (12 points, 2 parts) Recall that $\mathcal{P}(S)$ denotes the power set of a set S.

4a. (5 points) List all the elements of $\{A \in \mathcal{P}(\{2,3,4\}) \mid 3 \in A\}$

4b. (7 points) List all the elements of $\{A \in \mathcal{P}(\{7,8,9\}) \mid \{5,9\} \cup A = \{5,7,9\}\}$

Solutions. (a): The elements are the subsets of $\{2, 3, 4\}$ that contain 3, i.e.: $\{3\}, \{2, 3\}, \{3, 4\}, \{2, 3, 4\}$

(b): The elements are the subsets of $\{7, 8, 9\}$ that contain 7 but not 8. That is: $\{7\}, \{7, 9\}$

5. (20 points, 3 parts)

5a. (5 points) Give the contrapositive of the following statement, which is about a real number c and a subset S of \mathbb{R} :

$$(\exists x \in \mathbb{Z} \text{ s.t. } x^6 + 3x = c) \Rightarrow ((c \in S) \land (c + 2 \ge 0)).$$

5b. (5 points) Give the negation of the following statement:

$$\forall a \in \mathbb{Z}, \exists b, c \in \mathbb{Z} \text{ s.t. } ab \geq c^2 \text{ and } b > 0.$$

5c. (10 points) Prove the statement you gave as your answer to 5b above.

Solutions/Proof. (a): The contrapositive is

$$\left[\left((c \notin S) \lor (c+2 < 0) \right) \Rightarrow \left(\forall x \in \mathbb{Z}, \ x^6 + 3x \neq c \right) \right]$$

(b): The negation is

$$\exists a \in \mathbb{Z} \text{ s.t. } \forall b, c \in \mathbb{Z}, \text{ either } ab < c^2 \text{ or } b \leq 0$$

(c): **Proof**. Let $a = -1 \in \mathbb{Z}$.

Given $b, c \in \mathbb{Z}$, consider two cases:

Case 1: $b \le 0$. Then we are already done.

Case 2: Otherwise, we have
$$b > 0$$
. Then $ab = -b < 0 < c^2$

QED

6. (20 points) Recall the standard notation for intervals: for $a, b \in \mathbb{R}$ with a < b,

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}, \quad (a,b) = \{x \in \mathbb{R} \mid a < x < b\}, \quad (a,b] = \{x \in \mathbb{R} \mid a < x \le b\}.$$

Prove that $\bigcup_{t \in (0,3)} [5+t, 10] = (5, 10].$

Proof. (\subseteq): Given $x \in \text{LHS}$, there exists $t \in (0,3)$ such that $x \in [5+t,10]$. Thus,

$$5 < 5 + t \le x \le 10$$
,

and hence $x \in (5, 10]$.

 $QED \subseteq$

 (\supseteq) : Given $x \in (5, 10]$, consider two cases.

Case 1. x < 8, so that 5 < x < 8.

Define t = x - 5, so that 0 < t < 3 and hence $t \in (0,3)$.

We also have $5 + t = x < 8 \le 10$, so that $x \in [5 + t, 10]$. Hence, $x \in LHS$.

Case 2. Otherwise, we have $x \ge 8$, so that $8 \le x \le 10$. Let $t = 2 \in (0,3)$. Then $x \in [7,10] = [5+t,10]$, and hence $x \in LHS$.

QED

Alternative proof of (\supseteq) :

Given $x \in (5, 10]$, let $t = \frac{1}{2}(x - 5)$

Since x > 5, we have t > 0. In addition, since $x \le 10$, we also have $t \le \frac{1}{2}(10 - 5) = \frac{5}{2} < 3$. Thus, $t \in (0,3)$.

Furthermore,

$$5 + t = 5 + \frac{1}{2}(x - 5) = \frac{1}{2}(x + 5) < \frac{1}{2}(x + x) = x \le 10,$$

where the two inequalities are because $5 < x \le 10$, since $x \in (5, 10]$.

That is, we have $x \in (5 + t, 10]$ with $t \in (0, 3)$. Hence, $x \in LHS$.

QED (\supseteq)

OPTIONAL BONUS. (2 points.) With the same standard interval notation as in Problem 6, prove that

$$\bigcap_{t \in (0,1)} [3+t,7+2t] = [4,7]$$

Proof. (\subseteq): Given $x \in [4,7]$, then for any $t \in (0,1)$, we have

$$3+t < 4 < x < 7 < 7 + 2t$$

so $x \in (3 + t, 7 + 2t)$. This holds for all $t \in (0, 1)$, so $x \in LHS$.

 (\supseteq) : Given $x \in LHS$, then (using $t = \frac{1}{2} \in (0,1)$), we have $x \in [\frac{7}{2},8]$, so that $\frac{7}{2} \le x \le 8$.

Claim 1: $x \ge 4$

Proof of Claim 1: Suppose (towards contradiction) that x < 4.

In that case, choose $t = \frac{1}{2}(x+4) - 3 = \frac{x}{2} - 1$.

Then $t \ge \frac{7}{4} - 1 = \frac{3}{4} > 0$ because $x \ge \frac{7}{2}$. In addition, since x < 4, we also have $t < \frac{4}{2} - 1 = 1$. Hence, $t \in (0,1)$. However,

$$3+t=\frac{x}{2}+2=\frac{x+4}{2}>\frac{x+x}{2}=x,$$

so that $x \notin [3+t,7+2t]$, and hence $x \notin LHS$. Contradiction!

QED Claim 1

Claim 2: $x \le 7$

Proof of Claim 2: Suppose (towards contradiction) that x > 7.

In that case, choose $t = \frac{1}{4}(x-7)$.

Then $t \le \frac{8-7}{4} = \frac{1}{4} > 0$ because $x \le 8$. In addition, since x > 7, we also have $t = \frac{x-7}{4} > 0$. Hence, $t \in (0,1)$. However,

$$7 + 2t = 7 + \frac{x-7}{2} = \frac{x+7}{2} < \frac{x+x}{2} = x,$$

so that $x \notin [3+t, 7+2t]$, and hence $x \notin LHS$. Contradiction!

QED Claim 2

Combining Claims 1 and 2 gives $4 \le x \le 7$, and hence $x \in [4, 7]$

 $QED (\supseteq)$

QED