1. (12 points) Show that \(\lim_{(x,y) \to (0,0)} \frac{x^2y - 4xy}{x^2 + 5y^2} \) diverges.

Solution. Along the line \(y = 0 \) we have \(\lim_{x \to 0} \frac{0 - 0}{x^2 + 0} = \lim_{x \to 0} 0 = 0 \), but along \(y = x \) we have \(\lim_{x \to 0} \frac{x^3 - 4x^2}{x^2 + 5x^2} = \lim_{x \to 0} \frac{x - 4}{x + 5} = -\frac{2}{3} \neq 0 \), so the limit diverges.

2. (7 points) Let \(h(x, y) = x^2 - 3xe^y \). Compute the directional derivative \(D_{\vec{u}} h(1, 0) \), where \(\vec{u} \) is the unit vector in the direction of \(\vec{v} = \langle 4, -3 \rangle \).

Solution. Since \(||\vec{v}|| = \sqrt{16 + 9} = 5 \), the unit vector is \(\vec{u} = \frac{1}{5} \langle 4, -3 \rangle \).

We compute \(\nabla h = \langle 2x - 3e^y, -3xe^y \rangle \). Since \(h \) is differentiable, we have
\[
D_{\vec{u}} h(1, 0) = (\nabla h(1, 0)) \cdot \vec{u} = (2 - 3, -3(1)) \cdot \left(\frac{4}{5}, -\frac{3}{5} \right) = \frac{1}{5} \langle -1, -3 \rangle \cdot \langle 4, -3 \rangle = \frac{1}{5}(-4 + 9) = 1.
\]

3. (7 points) State the formal definition (i.e., the \(\varepsilon-\delta \) definition) of \(\lim_{(x,y) \to (3,7)} 2x^2 + xy = -3 \).

Answer. For all \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that for all \((x, y) \) such that \(0 < \sqrt{(x - 3)^2 + (y - 7)^2} < \delta \), we have \(|2x^2 + xy + 3| < \varepsilon \).

4. (20 points, 2 parts) Let \(f(x, y) = \begin{cases} 3y^3 - x^2y & \text{if } (x, y) \neq (0,0) \\ 0 & \text{if } (x, y) = (0,0) \end{cases} \)

(a). Compute \(f_x(0,0) \) and \(f_y(0,0) \).

(b). Compute \(D_{\vec{u}} f(0,0) \), where \(\vec{u} = \left\langle \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \right\rangle \).

Solution. (a): \(f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = \lim_{h \to 0} 0 = 0 \).

\[
f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{3h^3 - 0}{h} = \lim_{h \to 0} \frac{3h^3}{h} = \lim_{h \to 0} 3 = 3.
\]

(b): \(D_{\vec{u}} f(0,0) = \lim_{h \to 0} \frac{f(h/\sqrt{2}, -h/\sqrt{2}) - f(0,0)}{h/\sqrt{2}} = \lim_{h \to 0} \frac{-3h^3/(2\sqrt{2}) + h^3/(2\sqrt{2})}{h/\sqrt{2}} - 0 \)

\[
= \lim_{h \to 0} \frac{-2h^3/(2\sqrt{2})}{h/\sqrt{2}} = \lim_{h \to 0} \frac{-1}{\sqrt{2}} = -\frac{1}{\sqrt{2}}.
\]

5. (12 points) Let \(h(x, y) \) be a differentiable function such that
\[
\nabla h(3, -1) = \langle -6, 5 \rangle, \quad \nabla h(-2, -3) = \langle 7, -2 \rangle, \quad \text{and} \quad \nabla h(1, -1) = \langle -2, 3 \rangle.
\]

Define \(f(s, t) = h(s + 5t^3, st) \). Compute \(f_s(3, -1) \).

Solution. Write \(z = h(x, y) = f(s, t) \), where \(x = s + 5t^3 \) and \(y = st \). Since all the functions involved are differentiable, we have
\[
f_s = \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = h_x(x, y) \cdot (1) + h_y(x, y) \cdot (t).
\]

At \((s, t) = (3, -1) \), we have \(x = 3 + 5(-1)^3 = -2 \) and \(y = (3)(-1) = -3 \). Thus,
\[
f_s(3, -1) = h_x(-2, -3) \cdot 1 + h_y(-2, -3) \cdot (-1) = 7(1) + (-2)(-1) = 7 + 2 = 9.
\]
6. (20 points) Find the maximum and minimum values of the function \(f(x, y) = xy^2 \) on the ellipse \(2x^2 + y^2 = 6 \).

Solution. Let \(g(x, y) = 2x^2 + y^2 \) and apply Lagrange multipliers. We have \(\nabla f = (y^2, 2xy) \) and \(\nabla g = (4x, 2y) \), so our equations are:
\[
\begin{align*}
2y^2 &= 4\lambda x, \\
2xy &= 2\lambda y, \\
2x^2 + y^2 &= 6.
\end{align*}
\]
The second equation gives \(2y(x - \lambda) \), so either \(y = 0 \) or \(\lambda = x \).
If \(y = 0 \), then the third equation is \(x^2 = 3 \), so \(x = \pm \sqrt{3} \), giving the two points \((\pm \sqrt{3}, 0)\).
If \(\lambda = x \), the first equation is \(y^2 = 4x^2 \), so the third equation is \(6x^2 = 6 \), so \(x = \pm 1 \). Thus, \(y^2 = 4 \), so \(y = \pm 2 \), with the signs independent. We get four more points: \((\pm 1, \pm 2)\).
We compute \(f(\pm \sqrt{3}, 0) = 0 \), \(f(1, \pm 2) = 4 \), \(f(-1, \pm 2) = -4 \), so the max is 4 and the min is -4.

7. (22 points) Find and classify (as local minimum, local maximum, or saddle point) all critical points of the function \(h(x, y) = 8x^3 - 6xy + y^3 + 2 \).

Solution. We compute \(\nabla h = (24x^2 - 6y, -6x + 3y^2) \). Solving \(\nabla h = 0 \), we have \(24x^2 = 6y \) and \(3y^2 = 6x \). The first equation gives \(y = 4x^2 \), and the second gives \(y^2 = 2x \). Plugging the first into the second yields \(16x^4 = 2x \), so that \(2x(8x^3 - 1) = 0 \). Thus, either \(x = 0 \) or \(x^3 = 1/8 \).
If \(x = 0 \), then the first equation gives \(y = 0 \). If \(x^3 = 8 \), then \(x = 1/2 \), and the first equation gives \(y = 1 \). Thus, we have two critical points: \((0, 0)\) and \((1/2, 1)\).
We have \(h_{xx} = 48x, h_{xy} = -6, h_{yy} = 6y \), so \(D = \begin{vmatrix} 48x & 6 \\ -6 & 6y \end{vmatrix} \).
At \((0, 0)\), we get \(D = \begin{vmatrix} 0 & -6 \\ -6 & 6 \end{vmatrix} = -36 < 0 \), so there is a saddle point at \((0, 0)\).
At \((1/2, 1)\), we get \(D = \begin{vmatrix} 24 & -6 \\ -6 & 6 \end{vmatrix} = 24(6) - 6(6) = 18(6) > 0 \), and \(h_{xx} = 24 > 0 \), so there is a local minimum at \((1/2, 1)\).

OPTIONAL BONUS A. (2 points) Prove that the function
\[
f(x, y) = \begin{cases}
\frac{6x^2 - 5x^3y + 4y^2}{3x^2 + 2y^2} & \text{if } (x, y) \neq (0, 0) \\
2 & \text{if } (x, y) = (0, 0)
\end{cases}
\]
is differentiable at \((0, 0)\).

Solution. We have \(f(x, y) = 2 + g(x, y) \), where \(g(x, y) = \frac{-5x^2y^2}{3x^2 + 2y^2} \) for \((x, y) \neq (0, 0)\), and \(g(0, 0) = 0 \).
We claim the linearization of \(f \) at \((0, 0)\) is \(L(x, y) = 2 \); to prove this, and hence show that \(f \) is differentiable at \((0, 0)\), we need to show that
\[
\lim_{(x, y) \to (0, 0)} \frac{f(x, y) - L(x, y)}{\sqrt{x^2 + y^2}} = 0,
\]
or in other words, that
\[
\lim_{(x, y) \to (0, 0)} \frac{g(x, y)}{\sqrt{x^2 + y^2}} = 0.
\]
Here is the proof:
Given \(\varepsilon > 0 \), let \(\delta = \varepsilon / 5 > 0 \). Then for any \((x, y)\) with \(0 < \sqrt{x^2 + y^2} < \delta \), note that \(3x^2 + 2y^2 \geq x^2 + y^2 \), and that \(5x^2y^2 \leq 5(x^2 + y^2)^2 \). Thus,
\[
\left| \frac{g(x, y)}{\sqrt{x^2 + y^2}} - 0 \right| = \frac{5x^2y^2}{(3x^2 + 2y^2)\sqrt{x^2 + y^2}} \leq \frac{5(x^2 + y^2)^2}{(x^2 + y^2)^{3/2}} = 5\sqrt{x^2 + y^2} < 5\delta = \varepsilon.
\]
QED

OPTIONAL BONUS B. (1 point) Name the five countries that are permanent members of the United Nations Security Council.

Answer. USA, Russia, France, UK, China. (I.e., the victors in World War II.)