1. Each of the following limits converges. Compute them.
\[
\lim_{(x,y) \to (0,0)} \frac{e^x + x \sin y}{\ln(1 + x) + \cos^2(xy)} = \lim_{(x,y) \to (1,2)} \frac{x^4 - 3y^2}{x^2 + y^2} = \lim_{(x,y) \to (0,0)} \frac{x^4 + 2x^2 + x^2y^2 + 2y^2}{x^2 + y^2}
\]

2. Prove that each of the following limits diverges.
\[
\lim_{(x,y) \to (0,0)} \frac{2x^2 - y^2}{x^2 + 2y^2} = \lim_{(x,y) \to (0,0)} \frac{x^2y + y^3 + xy}{x^2 + y^2} = \lim_{(x,y) \to (0,0)} \frac{4x^2y^3 + 3xy^4}{x^8 + 5y^4}
\]

3. Let \(f(x, y) = \begin{cases}
\frac{x^3 + 2y^3}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\
0 & \text{if } (x, y) = (0, 0).
\end{cases} \)

 (a). Compute \(f_x(0, 0) \) and \(f_y(0, 0) \).

 (b). Compute \(D_\vec{u} f(0, 0) \), where \(\vec{u} \) is the unit vector in the direction of \(\vec{v} = (1, 1) \).

 (c). Is \(f \) differentiable at \((0, 0) \)? Why or why not?

4. State, but do not prove, the \(\varepsilon-\delta \) definition of each of the following limit statements.
\[
\lim_{(x,y) \to (4, -5)} H(x, y) = -3 \\
\lim_{(x,y) \to (3,2)} \sqrt{2x^2 - y} = 4 \\
\lim_{(x,y,z) \to (0,-2,1)} Q(x, y, z) = R
\]

5. Let \(f(x, y) = \frac{20 + \sin(x + 4y)}{10 + 3y} \).

 (a). Find an equation for the tangent plane to the surface \(z = f(x, y) \) at the point where \((x, y) = (0, 0) \).

 (b). Use your tangent plane to approximate the value of \(f(-0.3, 0.1) \).

6. Let \(g(x, y) = x^3y - 2x^2 + \frac{4y}{x} \).

 (a). Is \(g \) differentiable at \((0, 3) \)? Why or why not?

 (b). Is \(g \) differentiable at \((2, 3) \)? Why or why not?

 (c). Compute \(D_\vec{u} f(2, 3) \), where \(\vec{u} \) is the unit vector in the direction of \(\vec{v} = (3, -4) \).

 (d). At \((2, 3) \), in what direction does \(g \) increase the fastest?

 (e). What is the rate of increase of \(g \) in the direction from part (d)?

7. Suppose \(f(x, y), g(s, t), \) and \(h(s, t) \) are differentiable functions such that:
\[
\begin{align*}
&f_x(0, 0) = -4, \quad f_y(0, 0) = 7, \quad f_x(3, -2) = 5, \quad f_y(3, -2) = -2, \\
&f(0, 0) = 2, \quad f(3, -2) = 9, \quad g_s(0, 0) = -1, \quad g_t(0, 0) = 4, \\
&h_s(0, 0) = 2, \quad h_t(0, 0) = 3, \quad g(0, 0) = 3, \quad h(0, 0) = -2.
\end{align*}
\]

Let \(F(s, t) = f(g(s, t), h(s, t)) \). Compute \(F_s(0, 0) \) and \(F_t(0, 0) \).
8. Suppose $H(x, y, z)$ is a differentiable function such that $\nabla H(3, 2, 1) = (-4, 6, 5)$. Let $f(t) = H(t^2 - 1, 8 - 3t, t - 1)$.
 (a) Compute $f'(2)$.
 (b) At the point $(3, 2, 1)$, in which direction does $H(x, y, z)$ increase the fastest? How fast does H increase when we move in that direction?

9. Find an equation for the tangent plane to $z = \sqrt{xy} + 3y$ at the point $(1, 1, 2)$.

10. Find an equation for the tangent plane to $x^3 - \cos(xz) + xy^3 - yz = 0$ at the point $(0, 1, -1)$.

11. Find any and all point(s) on the ellipsoid $4x^2 + y^2 + 4z^2 = 36$ at which the tangent plane is parallel to the plane $x + y - 2z = 3$.

12. Find and classify (as local minimum, local maximum, or saddle point) all critical points of the function $f(x, y) = 4xy - x^4 - y^4$.

13. Find and classify (as local minimum, local maximum, or saddle point) all critical points of the function $g(x, y) = 8x^3 - 12xy + y^3 - 7$.

14. Find the point(s) on the hyperboloid $x^2 + y^2 - 4z^2 = 10$ closest to the point $(4, 2, 0)$.

15. Find the maximum and minimum values of the function $g(x, y) = 4xy + y^2$ on the ellipse $9x^2 + y^2 = 45$.

16. Find the maximum and minimum values of the function $f(x, y, z) = xyz$ on the sphere $x^2 + y^2 + z^2 = 3$.

17. Find the maximum and minimum values of the function $g(x, y) = 3x^2 - 4y + y^2 + 2$ on the disk $x^2 + y^2 \leq 9$.