Homework #2

Due Wednesday, September 11 in Gradescope by 11:59 pm ET

- **READ** the five worked-out examples in this handout
- WRITE AND SUBMIT solutions to the 20 assigned problems in this handout

NOTE: Show your work! Use the solutions to the eight worked examples here as guides for how much work to show on these sorts of problems.

Think about the graph of
$$y = \ln x$$
. We know that $\lim_{x \to 0^+} \ln x = \lim_{x \to 0^+} \ln x^{-\frac{1}{2}} - \infty$. Learn this!
Example 1: $\lim_{x \to 5^+} \ln(x-5) = \lim_{x \to 5^+} \ln x^{-\frac{1}{2}} + \frac{1}{2} + \frac{1}{2}$

Next, complete the following HW problems found on the next page

Assigned Problems for HW 2

Exercises 1–8: Differentiate the following functions. Simplify.

1.
$$f(x) = e^5$$
 2. $f(x) = e^x + x^e$ 3. $y = \frac{1 - e^{2x}}{1 + e^{2x}}$ 4. $f(x) = e^{\sin(2x)} + \sin(e^{2x})$
5. $y = e^{\sqrt{x}}$ 6. $y = x^2 e^{-1/x}$ 7. $y = \ln(1 + e^{3x})$ 8. $f(x) = \ln\left(\frac{1}{x}\right) + \frac{1}{\ln x}$

Exercise 9: Express the quantity as a single logarithm. Simplify.

$$\frac{1}{3}\ln[(x+2)^3] + \frac{1}{2}\left[\ln x - \ln[(x^2+3x+2)^2]\right]$$

Exercises 10–11: Solve each of the following equations for x:

10.
$$e^{7-4x} = 6$$
 11. $\ln(3x - 10) = 2$

Exercises 12–13: Evaluate each of the following Limits:

12.
$$\lim_{x \to 2^{-}} \ln |x - 2|$$
 13. $\lim_{x \to 3^{+}} \ln (x^2 - 9)$

Exercises 14–20: Evaluate each of the following Integrals. Simplify. Justify.

14.
$$\int e^x + x^e \, dx$$

15. $\int_0^{\ln 4} \frac{1}{e^{2x}} \, dx$
16. $\int \frac{(1+e^x)^2}{e^x} \, dx$
17. $\int (e^x + e^{-x})^2 \, dx$
18. $\int \frac{e^x}{1+e^x} \, dx$
19. $\int_2^3 \frac{1}{5-4x} \, dx$
20. $\int_e^{e^3} \frac{4}{x(\ln x)^2} \, dx$

My Office Hours: SMUD 406 Tuesday: 1:30–3:00 pm Thursday: 1:30-3:00 pm Friday: 2:00–3:00 pm (or by appointment)

Math Fellow evening TA Help Hours start soon; details TBA

• Office Hours are times to drop in to my office, unannounced. All are welcome! Just stop by. Working on your calculus assignment can be fun! I encourage you to come hang out at many of these help sessions.

• NO LATE HOMEWORK! unless illness or emergency occurs.