Homework #6

Due Wednesday, September 25 in Gradescope by 11:59 pm ET

- **READ** the two worked-out examples in this handout
- **CONSULT** Sections 6.8 and 7.1 of the Stewart Calculus textbook
- WRITE AND SUBMIT solutions to the 10 assigned problems in this handout

NOTE: Show your work, as always.

Example 1:
$$\lim_{x \to \infty} \left(e^{1/x} - \frac{4}{x} \right)^x \stackrel{\text{1}^{\infty}}{=} \lim_{x \to \infty} \exp\left(\ln\left(\left(e^{1/x} - \frac{4}{x} \right)^x \right) \right)$$
$$= \exp\left(\lim_{x \to \infty} \ln\left[\left(e^{1/x} - \frac{4}{x} \right)^x \right] \right) = \exp\left(\lim_{x \to \infty} x \ln\left(e^{1/x} - \frac{4}{x} \right) \right)$$
$$\stackrel{(e^{1/x} - \frac{4}{x}}{=} \right)$$
$$= \exp\left(\lim_{x \to \infty} \frac{\ln\left(e^{1/x} - \frac{4}{x} \right)}{\frac{1}{x}} \right) \cdot \left[e^{1/x} \left(-\frac{1}{x^2} \right) + \frac{4}{x^2} \right] \left(-x^2 \right) \right]$$
$$= \exp\left[\lim_{x \to \infty} \left(\frac{1}{e^{1/x} - \frac{4}{x}} \right) \cdot \left[e^{1/x} \left(-\frac{1}{x^2} \right) + \frac{4}{x^2} \right] \left(-x^2 \right) \right]$$
$$= \exp\left[\lim_{x \to \infty} \left(\frac{1}{e^{1/x} - \frac{4}{x}} \right) \cdot \left(e^{\frac{1}{x}} \left(1 \right) - 4 \right) \right] = \exp\left(1 \cdot (-3) \right) = e^{-3}$$
$$\text{Example 2: } \int \arctan\left(\frac{1}{x} \right) dx$$
$$\left[u = \arctan\left(\frac{1}{x} \right) dv = 1 dx \right]$$
$$du = -\frac{1}{1 + \left(\frac{1}{x} \right)^2} \cdot \left(-\frac{1}{x^2} \right) dx \quad v = x$$
$$du = -\frac{1}{x^2 + 1} dx \quad \leftarrow \text{simplify}$$
$$= x \arctan\left(\frac{1}{x} \right) - \int \frac{-x}{x^2 + 1} dx$$
$$\left[\frac{w = x^2 + 1}{\frac{1}{2} dw = x dx} \right]$$
$$= x \arctan\left(\frac{1}{x} \right) + \frac{1}{2} \int \frac{1}{w} dw = x \arctan\left(\frac{1}{x} \right) + \frac{1}{2} \ln|x^2 + 1| + C = \left[x \arctan\left(\frac{1}{x} \right) + \frac{1}{2} \ln(x^2 + 1) + C \right]$$

Next, complete the following HW problems found on the next page

Assigned Problems for HW 6

Exercises 1–3: Compute each of the following Limits. Simplify. Justify every step.

1.
$$\lim_{x \to \infty} \frac{\ln (5 + e^{3x})}{x}$$

2.
$$\lim_{x \to \infty} \left(\frac{x}{x+1}\right)^x$$

3.
$$\lim_{x \to \infty} \left(e^{1/x^6} - \frac{6}{x^6}\right)^{x^6}$$

Exercises 4–10: Compute each of the following Integrals using Integration by Parts. Simplify. *Justify every step.*

4.
$$\int x \cos(5x) dx$$

5.
$$\int_{0}^{1} \arctan x dx$$

6.
$$\int_{0}^{5} \frac{x^{2}}{e^{x}} dx$$

7.
$$\int (\ln x)^{2} dx$$

8.
$$\int_{1}^{\sqrt{3}} \arctan\left(\frac{1}{x}\right) dx$$

9.
$$\int x \arctan x dx$$

10.
$$\int \ln (x^{2} + 7) dx$$

My (Drop-In) Office Hours: SMUD 406

Tuesday: 1:30–3:00 pm Thursday: 1:30–3:00 pm Friday: 2:00–3:00 pm (or by appointment)

Math Fellow Evening Drop-in Hours: SMUD 207

Sunday	6:00–7:30pm:	Natalie Stott
Sunday	7:30–9:00pm:	Oscar Hernandez
Monday	6:00-7:30pm:	Aaron Cordoba
Monday	7:30–9:00pm:	Oscar Hernandez
Tuesday	6:00-7:30pm:	Gretta Ineza
Wednesday	7:30–9:00pm:	Natalie Stott
Thursday	6:00-7:30pm:	Gretta Ineza
Thursday	7:30–9:00pm:	DJ Beason
Friday	6:00-7:30pm:	Aaron Cordoba
Friday	7:30–9:00pm:	DJ Beason

• My Office Hours are times to drop in to my office, unannounced. Math Fellow hours are also for unannounced drop-ins, in SMUD 207, at the hours above.

All are welcome! Just stop by. Working on your calculus assignment can be fun! I encourage you to come hang out at many of these help sessions.

• NO LATE HOMEWORK! unless illness or emergency occurs.