Homework #16

Due Friday, November 15 in Gradescope by 11:59 pm ET

- **REVIEW** your class notes about power series representations of functions
- **CONSULT** Section 11.9 of the Stewart Calculus textbook
- WRITE AND SUBMIT solutions to the 21 assigned problems in this handout

NOTE: Show your work, as always.

Assigned Problems for HW 16

Exercises 1–8: Find the Series Representation for the following functions using Substitution into a known series, and determine the Radius of Convergence R. Simplify.

1.
$$\frac{1}{1+x^2}$$
 2. $\frac{x^2}{x^4+16}$ 3. $x^3 \cos(x^2)$ 4. $5x^2 \sin(5x)$

5. $\frac{d}{dx}(x^3 \arctan(7x)) = 6.\int x^3 \arctan(7x) dx = 7. \frac{d}{dx}x^2 \ln(1+6x) = 8. \int x^4 e^{-x^3} dx$

Exercise 9: Find the Series Representation for $f(x) = \frac{1}{(1+x)^2}$ / \write as pwr ser?

Hint:
$$\frac{1}{(1+x)^2} = \frac{d}{dx} \left(-\frac{1}{1+x} \right)^{\text{write as p}} = \dots$$

Exercise 10: Prove the Power Series Representation formula for $\arctan x$, as shown in class. Yes, I did it out in class (and you should consult your notes to see how), and yes, this includes showing that C = 0.

Exercise 11: Find Series Representation for $\ln(5-x)$. Solve for C and the Radius R.

Hint:
$$\ln(5-x) = \int \frac{-1}{5-x} dx = \int \frac{-1}{5\left(1-\frac{x}{5}\right)} dx = -\frac{1}{5} \int \frac{1}{1-\frac{x}{5}} dx = \dots$$

Exercise 12: Find the MacLaurin Series for $f(x) = e^{-2x}$ using two different methods. **First**, using the *Definition* of the MacLaurin Series ("Chart Method"). **Second**, use Substitution into a known series. Your answers should be in Sigma notation.

Continue to next page

Exercise 13: In this problem, you do **not** need to state the Radius. Your answers here should be in Sigma notation $\sum_{n=0}^{\infty}$. You may use the fact that $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ without extra justification. Here goes:

(a) Use the Definition ("Chart Method") to compute the MacLaurin Series for $F(x) = \cos x$.

(b) Use Differentiation to compute the Series for $F(x) = \cos x$.

(c) Use Integration to compute the Series for $F(x) = \cos x$. Hints: yes, you should solve for +C. yes, C should equal 1. Show why C = 1.

Exercises 14–21: Find the Sum of each of the following Series.

Please note: I'm not asking you to run convergence tests on them, because I'm already telling you that they converge! Instead, I'm asking you to **Find the Sum** of each of the following convergent series. (And of course, justify your answers / show you work, as always.)

14.
$$\sum_{n=0}^{\infty} \frac{7^n}{n!}$$
 15. $\sum_{n=0}^{\infty} \frac{(-1)^n 5^n}{n!}$ 16. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{n!}$

17.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$$
 18.
$$\sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$$
 19.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$

20.
$$1 - \ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \dots$$
 21. $3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \dots$

My (Drop-In) Office Hours: SMUD 406

Tuesday: 1:30–3:00 pm Thursday: 1:30–3:00 pm Friday: 2:00–3:00 pm (or by appointment)

Math Fellow Evening Drop-in Hours: SMUD 207

Sunday	6:00–7:30pm:	Natalie Stott
Sunday	7:30–9:00pm:	Oscar Hernandez
Monday	6:00-7:30pm:	Aaron Cordoba
Monday	7:30–9:00pm:	Oscar Hernandez
Tuesday	6:00-7:30pm:	Gretta Ineza
Wednesday	7:30–9:00pm:	Natalie Stott
Thursday	6:00-7:30pm:	Gretta Ineza
Thursday	7:30–9:00pm:	DJ Beason
Friday	6:00-7:30pm:	Aaron Cordoba
Friday	7:30–9:00pm:	DJ Beason

• My Office Hours are times to drop in to my office, unannounced. Math Fellow hours are also for unannounced drop-ins, in SMUD 207, at the hours above.

All are welcome! Just stop by. Working on your calculus assignment can be fun! I encourage you to come hang out at many of these help sessions.

• NO LATE HOMEWORK! unless illness or emergency occurs.