
Extra Examples of Interval and Radius of Convergence

Find the Interval and Radius of Convergence for the following power series. Analyze
carefully and with full justification.
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The Ratio Test gives convergence for x when
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< 1 or |3x− 4| < 5.

(Note: Must make this statement above)

That is, −5 < 3x− 4 < 5 =⇒ −1 < 3x < 9 =⇒ −1

3
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Manually Test Endpoints: (where L = 1 and Ratio Test is Inconclusive)
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Find the Interval andRadius of Convergence for each of the following power series. Analyze
carefully and with full justification.
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Diverges by the Ratio Test for all x unless x− 6 = 0 or x = 6 (when L = 0 < 1)

(Note: Must make this statement above)

So I = {6} with R = 0 .
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Converges by the Ratio Test for all Real numbers x

(Note: Must make this statement above)

I = (−∞,∞) with R = ∞ .
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